

EMULATING INDUSTRIAL CONTROL SYSTEM FIELD DEVICES USING

GUMSTIX TECHNOLOGY

THESIS

Dustin J. Berman

AFIT/GCO/ENG/12-13

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT/GCO/ENG/12-13

EMULATING INDUSTRIAL CONTROL SYSTEM FIELD DEVICES USING

GUMSTIX TECHNOLOGY

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Dustin J. Berman

June 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCO/ENG/12-13

EMULATING INDUSTRIAL CONTROL SYSTEM FIELD DEVICES USING

GUMSTIX TECHNOLOGY

Dustin J. Berman

Approved:

AFIT/GCO/ENG/12-13

iv

Abstract

Industrial Control Systems (ICS) have an inherent lack of security and situational

awareness capabilities at the field device level. Yet these systems comprise a significant

portion of the nation’s critical infrastructure. Currently, there is little insight into the

characterization of attacks on ICS. Stuxnet provided an initial look at the type of tactics

that can be employed to create physical damage via cyber means. The question still

remains, however, as to the extent of malware and attacks that are targeting the critical

infrastructure, along with the various methods employed to target systems associated with

the ICS environment.

This research presents a device using Gumstix technology that emulates an ICS

field device. The emulation device is low-cost, adaptable to myriad ICS environments

and provides logging capabilities at the field device level. The device was evaluated to

ensure conformity to RFC standards through the use of Triangle MicroWorks and that the

operating characteristics are consistent with actual field devices. The device was also

evaluated in that the device can respond as a PLC to common fingerprinting techniques.

The device was able to respond according to RFC standards and does respond as a valid

PLC to common fingerprinting techniques.

v

Acknowledgments

Many thanks go out to my wife who put up with the late nights and early

mornings. I would also like to thank my advisor Maj Jonathan Butts who dedicated much

of his time to help me accomplish both my academic and personal goals. I would also

like to thank Mr. Juan Lopez Jr. for recommending additional ways to scope my thesis

and also want to thank Dr. Barry Mullins for helping me learn a lot of what I know today.

 Dustin J. Berman

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures .. ix

List of Tables ... xi

I. Introduction ...1

1.1 Problem Definition ..1

1.2 Goals ...2
1.3 Scope and Limitations ...3

1.4 Organization ..3

II. Background ...5

2.1 Overview ...5
2.2 Industrial Control Systems Background ...5

2.3 Modbus Protocol ...8
2.4 Critical Infrastructure Protection...11
2.5 Industrial Control Systems Security ...13

2.6 ICS Security Mechanisms ...15
2.7 Network Attack ...17

2.7.1 Fingerprinting ... 17
2.8 Emulation ..19

2.8.1 Honeypot Overview ... 20

2.8.2 Advantages of Honeypots .. 21

2.8.3 Disadvantages of Honeypots .. 22
2.8.4 Honeypot Attributes ... 22
2.8.5 Honeypot Technology in IT ... 23

2.9 Honeypots in ICS ..27
2.9.1 Current Honeypots in ICS .. 28

2.9.2 Emulation Requirements .. 29
2.10 Summary ...30

III. Methodology ..31

3.1 Problem Definition ..31

3.1.1 Goals and Hypothesis ... 31

vii

3.1.2 Approach .. 31
3.2 Environment ..32
3.3 Evaluation Technique..34

3.3.1 Functionality Test through Modbus Traffic Emulation 34

3.3.2 Fingerprinting Test Cases ... 36
3.3.3 Invalid Traffic Test Cases .. 40
3.3.4 Logging Capabilities .. 40
3.3.5 Qualitative Evaluation .. 41

3.4 Methodology Summary ...42

IV. Analysis and Results ..43

4.1 Development of emulated PLC ...43

4.1.1 Architecture .. 43
4.1.2 Implementation Details .. 44

4.2 Emulated PLC Initialization Checks ...45
4.3 Results ...46

4.3.1 Functionality Test through Modbus Traffic Emulation 46
4.3.2 Fingerprinting Techniques ... 49

4.3.3 Invalid ICS Traffic ... 52
4.3.4 Logging Capabilities .. 52
4.3.5 Qualitative Evaluation .. 55

4.4 Analysis ...55

4.5 Results Summary ..56

V. Conclusions and Recommendations ..58

5.1 Conclusions ...58

5.2 Future Work ..59
5.2.1 Further Protocol Development ... 59

5.2.2 Levels of Implementation ... 59
5.2.3 Response Time ... 59

5.2.4 Traffic Loss .. 60

5.2.5 Ladder Logic and Firmware Implementation ... 60

5.2.6 Serial Implementation .. 60
5.2.7 Ethernet Header Manufacturing Tags .. 61

5.3 Concluding Remarks ...61

Appendix A: Setting Up Emulated PLC ..62

Appendix B: Canary.py code ...68

Appendix C: Emulated PLC Test Case Supporting Figures ..88

C.1 Functionality Test Through Modbus Traffic Emulation ..88

C.2 Fingerprinting Port Scan Test Case ..94

viii

C.3 Fingerprinting Banner Grab Test Case ...99
C.4 Invalid Traffic Test Case ..101

Appendix D: List of Acronyms..104

Bibliography ..106

ix

List of Figures

 Page

Figure 2.1: ICS network configuration 7

Figure 2.2: Modbus serial message format. .. 8

Figure 2.3: Modbus TCP message format. ... 9

Figure 2.4: Network setup for Honeynet . .. 24

Figure 2.5: Typical Sebek deployment 25

Figure 2.6: Sample configuration of Honeyd 26

Figure 2.7: SCADA Honeynet configuration 29

Figure 3.1: Network diagram. ... 32

Figure 3.2: Representative Gumstix device. ... 33

Figure 4.1: Read coil response Wireshark dissection. .. 47

Figure 4.2: Triangle MicroWorks response statistics. .. 47

Figure 4.3: Read, Write, Read dissected in Triangle MicroWorks 48

Figure 4.4: Read coil response Wireshark dissection. .. 50

Figure 4.5: Nmap MAC address resolution. ... 50

Figure 4.6: Triangle MicroWorks response statistics for banner grab. 51

Figure 4.7: Response to banner grab in Triangle MicroWorks. 51

Figure 4.8: Syslog entries of interactions with the emulated PLC. 53

Figure 4.9: Syslog entries from read, write, read test. .. 53

Figure 4.10: Syslog entries for banner grab. ... 54

Figure 4.11: Syslog entry from invalid TCP checksum. ... 55

Figure C.1: Traffic captured on HMI running Triangle MicroWorks 88

file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170327
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170328
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170329
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170330
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170331
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170332
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170333
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170334
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170335
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170337
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170338
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170343
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170346

x

Figure C.2: Traffic captured on emulated PLC running Triangle MicroWorks 89

Figure C.3: Traffic captured on HMI running Modbus Poll ... 90

Figure C.4: Traffic captured on emulated PLC running Modbus Poll 91

Figure C.5: Traffic captured on HMI during read, write, read test. 92

Figure C.6: Traffic captured on emulated PLC during read, write, read test. 93

Figure C.7: Nmap Intense Scan All TCP Ports, Emulated PLC 94

Figure C.8: Nmap Intense Scan All TCP Ports, CompactLogix 1769 95

Figure C.9: Nmap Intense Scan All TCP Ports, MicroLogix 1100 96

Figure C.10: Nmap Operating System Scan on Ethernet/IP port ControlLogix 1769...... 97

Figure C.11: Nmap Operating System Scan on Ethernet/IP port MicroLogix 1100 98

Figure C.12: Traffic captured on HMI from banner grabbing test. 99

Figure C.13: Traffic captured on emulated PLC from banner grabbing test. 100

Figure C.14: Network capture of invalid checksum sent to MicroLogix 1100 101

Figure C.15: Network capture of invalid checksum sent to ControlLogix 1769 102

Figure C.16: Network capture of invalid checksum sent to emulated PLC.................... 103

file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170347
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170348
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170349
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170350
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170351
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170357
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170358
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170359
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170360
file:///C:/Users/Dustin/Desktop/Thesis.docx%23_Toc324170361

xi

List of Tables

 Page

Table 2.1: Sector-Specific Agencies and assigned CIKR sectors..................................... 12

Table 4.1: Modbus TCP traffic tests. .. 46

Table 4.2: Response to valid/invalid TCP checksum. .. 52

1

EMULATING INDUSTRIAL CONTROL SYSTEM FIELD DEVICES USING

GUMSTIX TECHNOLOGY

I. Introduction

Industrial control systems (ICS) constitute a significant portion of the nation’s

critical infrastructure. The power grid, transportation, oil and gas, and public works

sectors rely heavily on the proper operation of control systems. A major disruption of

any of these systems may result in devastating consequences. The limitations in ICS

security have resulted in numerous failures, both targeted and un-targeted. In 2003, the

Sobig virus infected computers at the Amtrak dispatching headquarters, causing signaling

systems to shut down and halt ten trains between Pennsylvania and South Carolina [29].

The Slammer worm penetrated a computer at an Ohio nuclear plant in 2003, causing the

safety monitoring system to be disabled for nearly five hours [33]. Most notably, the

recent Stuxnet virus targeted specific operating characteristics to create direct physical

consequences [22].

1.1 Problem Definition

Attacks on networking systems follow a general pattern and can be categorized

according to the following sequential steps: reconnaissance, scanning, gaining access,

maintaining access and covering tracks [37]. During reconnaissance and scanning, an

attacker or malware obtains information about the targeted system. Security mechanisms

(e.g., intrusion detection systems, antivirus and honeypots) are employed in traditional

Information Technology (IT) systems to detect these malicious actions and provide early

indicators of potential impending attacks. For ICS, however, security mechanisms

2

designed specifically for the ICS environment are presently minimal. Indeed, there is

lack of monitoring capabilities at the field device level. The field device level includes

programmable logic controllers (PLCs) that control and monitor the physical operating

parameters. Security monitoring at these end points needs to be improved to detect

malicious actions and provide early indicators of potential impending attacks.

End system devices such as PLCs lack the inherent processing power, memory or

system capabilities to incorporate security programs. Additionally, the highly dispersed

nature of ICS operations requires extensive costs to retrofit security solutions. Finally, the

lack of logging capabilities inhibits forensic ability to characterize attack tactics that are

targeted towards the ICS environment.

1.2 Goals

 The goal of this research is to include attack detection within ICS at the field

device level. Specifically, this research develops an inexpensive, configurable, and

portable emulation device that provides logging capabilities. The solution provides a

low-cost security device that can be readily configured for implementation across many

ICS environments. The PLC emulation device can be employed as an early detection

sensor, introduces logging capabilities at the field device level, and can help characterize

cyber attacks against ICS systems.

 The emulated PLC should respond in accordance to RFC standards with any user

that may try to interact with it directly. Additionally, the device must be capable of

handling invalid traffic and respond to common fingerprinting techniques in a manner

that will emulate an operational PLC. The device must handle all forms of traffic and be

3

able to record any interaction with the emulated PLC. It is also expected to evade being

fingerprinted as a Linux device while logging any interactions.

1.3 Scope and Limitations

The scope of this research focuses on emulation of Modbus TCP communication

of a PLC. The six most common functions used in Modbus TCP traffic are emulated on

the Gumstix technology to show that the emulation can be achieved. It is expected that

further functions of the Modbus TCP specification can be added in future development

iterations. It is also expected that additional protocols and services much like the

Modbus protocol can be implemented in future development.

The research is limited by the inability to access a full ICS operational system.

The test environment, however, is derived such that findings are expected to be consistent

with an operational ICS. Additionally, a common method to fingerprint ICS devices is

through Ethernet header manufacturer tags. These tags are represented as Ethernet

trailers in many common packet dissection platforms, such as Wireshark. Due to lack of

access to operational PLCs that implement the Ethernet tags, this technique is not

evaluated. It is expected that in future research the tags can be analyzed and readily

implemented.

1.4 Organization

Chapter 2 presents background information about ICS, ICS security and critical

infrastructure protection. The Modbus protocol is described along with related research

for ICS security measures. Finally, material on emulation in both the IT and ICS sector is

presented.

4

Chapter 3 presents the methodology used in this research. This chapter describes

the tests created to validate the emulation of the PLC device. Tests are compiled to cover

a variety of traffic scenarios a fielded PLC encounters.

Chapter 4 presents the results from the tests described in Chapter 3. The results

from these tests are presented based on each test scenario. The results demonstrate how

the emulated device responds as an operational PLC would respond to common

fingerprinting techniques used in ICS networks.

Chapter 5 presents the conclusions and future work for this research. This section

is followed by several appendices with material to both support the results given in

Chapter 4 and to allow other to reproduce the emulated PLC on a Gumstix Overo board.

5

II. Background

2.1 Overview

 This section discusses topics associated with industrial control systems (ICS),

critical infrastructure protection, emulation, and related research. The United States has

seen a significant and steady increase in cyber attacks on both traditional information

technology (IT) networks and ICS [20]. Some of these systems are crucial to our national

critical infrastructure, and greater efforts and attention are being focused on securing ICS

systems. Recommendations by the National Office for Cyberspace include working with

regulatory agencies to develop governing policies for ICS and also work to secure

government-owned critical infrastructures.

 As an example of the emerging threat, Stuxnet demonstrated the damage that can

be caused by malware that targets ICS. Stuxnet showed that an attack on ICS networks is

possible and the effects of such an attack can be detrimental. Stuxnet was able to

manipulate physical devices connected to the PLC to operate outside their normal

parameters, sabotaging these devices [10]. Similar attacks are more likely as

organizations increasingly connect their ICS networks to their corporate networks,

providing additional attack vectors into ICS networks.

2.2 Industrial Control Systems Background

 ICS manage, direct and monitor the behavior of large-scale, distributed systems in

the critical infrastructure sectors. ICS use central monitoring stations, typically with a

human machine interface (HMI) for an operator in the loop, to control and monitor

6

remote processes [2]. ICS networks control critical infrastructure such as gas and oil

pipelines, electric transmission, manufacturing, and many other critical infrastructures.

Figure 2.1 shows the devices typical to an ICS network and their traditional

configuration. A Primary Control Center controls and monitors the overall operations.

Within the Primary Control Center is the human machine interface (HMI) station,

Control Server (Master Terminal Unit), Data Historian and Engineering Workstations.

 The HMI provides the data to an operator in a Graphical User Interface (GUI).

The GUI allows the operator to interact with the field devices in such a manner that the

data is easily interpreted. The Control Server, many times referred to as the Master

Terminal Unit (MTU), presents data to the HMI while also transmitting data from the

HMI to field devices [19]. The Data Historian stores all the data that is reported to the

MTU; this data is used by the engineers at their workstations to determine the efficiency

of the network and billing purposes.

 Figure 2.1 also shows a Backup Control Center which is a replica of the Primary

Control Center that can assume control in case of a potential power outage or natural

disaster in the region. The Primary and Backup Control Centers communicate through

radio signals and Ethernet-based communications to remote stations via specialized

protocols. The Remote Stations consist of field devices and the actuators and sensors that

are connected to the field devices.

 PLCs are field devices that communicate with the monitoring stations and convert

digital control messages into physical actions such as opening and closing valves and

breakers, collecting data from sensor systems, and monitoring the local environment for

alarm conditions. There are several proprietary and open source protocols designed

7

specifically for communications in ICS networks including: Modbus, DNP3, ProfiNet,

Ethernet IP and many others [24], [40], [34].

Figure 2.1: ICS network configuration [39].

The Regional Control Center is used in larger ICS networks to handle a

subsection of the network (e.g., power generation facility in a power company). These

control centers consist of a HMI and a MTU for local control of the network subsection.

The ICS network is commonly connected to the Corporate Enterprise Network to allow

authorized employees access to an HMI station, many times with read only access, to

view the current status of the network.

8

The communication architecture for control systems uses a hierarchical, request-

response paradigm for message transmission between a master control device and remote

field devices. The master sends request messages to the outlying field device to gather

data or to specify control actions. The field device collects discrete and analog sensor

data and maintains actuator settings specified by the master. Response messages are

generated by the field device after direct requests from the master. Additionally, the field

device may notify the master when alarm conditions are detected.

2.3 Modbus Protocol

Modbus, designed in 1979, is one of the widest implemented communication

protocols in the industrial control system environment [26]. Originally designed for

serial communication, messages are transmitted between a master and field devices. The

Modbus message format, depicted in Figure 2.2, contains three fields: outstation slave

address, Modbus application protocol data unit (PDU), and an error checking field (CRC)

[24]. The slave address identifies the intended recipient, with each device on the network

assigned a unique identifier. The application PDU is comprised of a one byte function

code specifying desired actions and up to 252 bytes for function parameters. The CRC

Figure 2.2: Modbus serial message format.

9

field is used to identify integrity errors that occur during message exchange.

To leverage the benefits and cost savings of LAN/WAN technologies, Modbus

was modified for transmission to accommodate TCP/IP channels. Indeed, Modbus TCP

extends the serial implementation by enabling a master to have multiple outstanding

transactions, and an outstation to engage in concurrent communications with multiple

masters [25]. In addition to the original serial message data fields, a Modbus application

protocol (MBAP) header is added to facilitate IP communication. Figure 2.3 shows the

message format of a Modbus TCP packet. The MBAP header contains a transaction ID,

protocol designator, data length and unit id number. The Modbus data frame is

encapsulated as a TCP payload and transmitted using Internet Assigned Numbers

Authority (IANA) designated port 502.

The Modbus specification identifies a common set of function codes. The basic

function codes implemented in the majority of systems are listed below, with the hex

representation identified in parenthesis. Note that individual implementation schemes

may use additional function codes designated by the standard for individual system

configuration.

Figure 2.3: Modbus TCP message format.

10

 (0x01) Read Coils - This function code is used to read from 1 to 2000 contiguous

status of coils in a remote device.

 (0x02) Read Discrete Inputs - This function code is used to read from 1 to 2000

contiguous status of discrete inputs in a remote device.

 (0x03) Read Holding Registers - This function code is used to read the contents of

a contiguous block of holding registers in a remote device.

 (0x04) Read Input Registers - This function code is used to read from 1 to 125

contiguous input registers in a remote device.

 (0x05) Write Single Coil - This function code is used to write a single output to

either ON or OFF in a remote device.

 (0x06) Write Single Register - This function code is used to write a single holding

register in a remote device.

 (0x0F) Write Multiple Coils - This function code is used to force each coil in a

sequence of coils to either ON or OFF in a remote device.

 (0x10) Write Multiple Registers - This function code is used to write a block of

contiguous registers (1 to 123 registers) in a remote device.

 (0x14) Read File Record - This function code is used to perform a file record

read.

 (0x15) Write File Record - This function code is used to perform a file record

write.

 (0x16) Mask Write Register - This function code is used to modify the contents of

a specified holding register using a combination of an AND mask, an OR mask,

and the register's current contents.

 (0x17) Read/Write Multiple Registers - This function code performs a

combination of one read operation and one write operation in a single MODBUS

transaction.

 (0x18) Read FIFO Queue - This function code allows the read the contents of a

First-In-First-Out (FIFO) queue of register in a remote device.

 (0x2B) Encapsulated Interface Transport (EIT) - The MODBUS Encapsulated

Interface (MEI)Transport is a mechanism for tunneling service requests and

method invocations, as well as their returns, inside MODBUS PDUs.

11

Consider, for example, communication from a master device to a PLC to close a

valve in an oil and gas pipeline. The master generates a request message that specifies a

write action with opcode 05 for address 01 containing data value FF to close the control

valve. The PLC performs the action and responds with a reply message containing

opcode 05 and address 01 to indicate completion of the action. Subsequent read requests

from the master returns a value indicating the valve is closed.

2.4 Critical Infrastructure Protection

 Critical infrastructure protection (CIP) relates to the preparedness to an incident

involving critical infrastructure. In testimony to Congress by Gregory C. Wilshusen,

Director, Information Security Issues, defines CI as:

 “Critical infrastructures are systems and assets, whether physical or virtual, so

vital to our nation that their incapacity or destruction would have a debilitation impact

on national security, economic well-being, public health or safety, or any combination of

these” [11].

 Critical Infrastructure is divided into 18 sectors based on Homeland Security

Presidential Directive 7 (HSPD-7) [13]. In HSPD-7, the President designates the

Secretary of Homeland Security as the “principal Federal official to lead Critical

Infrastructure and Key Resources (CIKR) protection efforts” and assigns responsibilities

to Federal Sector-Specific Agencies (SSAs). The list of sectors and their corresponding

SSAs are provided in Table 2.1. This directive provides the criteria for establishing

additional sectors of protection in the future. Many of these sectors are very complex and

interconnected in such a way that if one of these sectors is disrupted it could cause

12

disruption in other sectors. An example of this is if an attacker is able to prevent the

transmission of power to other facilities such as a manufacturing plant, production at that

plant halts. A similar condition occurred in 2003 when a fault in the power grid caused

an estimated 55 million people to lose power [30]. As a result, boil water advisories went

into effect, train service in the region shut down, airports in the region shut down, many

oil refineries on the east coast had to shut down, cellular communications was disrupted

due to cell towers backup generators shut off, and many large factories had to stop or

slow productions because of supply problems. Although the effects were not caused by

a malicious actor, the scenario demonstrates the impact to critical services.

Table 2.1: Sector-Specific Agencies and assigned CIKR sectors [5][6][28].

Sector Specific Agency Critical Infrastructure and

Key Resources Sector

Department of Agriculture

Department of Health and Human Services
Agriculture and Food

Department of Defense Defense Industrial Base

Department of Energy Energy

Department of Health and Human Services Healthcare and Public Health

Department of the Interior National Monuments and Icons

Department of the Treasury Banking and Finance

Environmental Protection Agency Water

Department of Homeland Security

 Office of Infrastructure Protection
Chemical

Commercial Facilities

Critical Manufacturing

Dams

Emergency Services

Nuclear Reactors, Materials and Waste

 Office of Cybersecurity

 and Communications
Information Technology

Communications

 Transportation Security Administration Postal and Shipping

 Transportation Security Administration

 United States Coast Guard Transportation Systems

 Immigration and Customs Enforcement

 Federal Protective Service Government Facilities

13

2.5 Industrial Control Systems Security

 Control systems offer unique security challenges [17]. A primary benefit of

control systems is that remote and isolated locations can be monitored centrally without

the need for onsite personnel. From a security standpoint, however, this provides entry

points into the system that have minimal physical safeguards. Additionally, the trend to

interconnect devices using networking technologies introduces entry points, often via the

Internet.

The limitations in ICS security have resulted in numerous failures, both targeted

and un-targeted. In 2003, the Sobig virus infected computers at the Amtrak dispatching

headquarters, causing signaling systems to shut down and halt ten trains between

Pennsylvania and South Carolina [29]. The Slammer worm penetrated a computer at an

Ohio nuclear plant in 2003, causing the safety monitoring system to be disabled for

nearly five hours [33]. At the Browns Ferry nuclear power plant in 2006, a “Data Storm”

spike in traffic caused a PLC to crash, resulting in the failure of recirculation pumps and

forcing a manual reactor shutdown [42]. Most notably, the recent Stuxnet virus targeted

specific operating characteristics to create direct physical consequences [22].

ICS networks are connected to the Internet despite known risks. Leverett

discovered 10,358 ICS related devices connected to the Internet through a search over a

two year period from 2009-2011 [43]. Leverett used a total of 33 queries to find over

10,000 devices using an open source search engine, SHODAN. He also used Google’s

geocoding service to locate the devices by the latitude and longitude using the country,

city name, and country code. Of the devices discovered, only 17 percent implemented

any type of authentication [21].

14

ICS networks require constant integrity and availability. ICS network engineers

typically have not considered confidentiality because the networks were primarily air

gapped. Integrity is important because valid traffic is necessary to ensure that a device is

operating within normal operating parameters. Availability is also very important

because the systems are responsible for critical services that require optimal uptime.

A primary shortfall in ICS security is the lack of ability to monitor and detect

malicious events at the field device level. PLCs have little memory, hard drive space, or

processing power and are not designed to execute additional applications. As a result,

there are minimal security mechanisms designed specifically for the ICS environment.

The lack of early attack indicators and logging capabilities impedes identification of

attacks and the ability to perform forensics if a system is compromised.

Encountered in many ICS networks are legacy system devices. It is not abnormal

for a system to be in use for 30 years in a traditional ICS network [19]. Many of these

systems must be in operation 100% of the time, so they cannot be taken offline for

system upgrades even when a security hole has been discovered. These systems are

typically left vulnerable for many years without replacement or upgrades.

ICS security has to deal with the challenge of bridging the gap between

Information Technology (IT) experts who know the traditional security solutions and the

engineers that configure ICS networks. IT experts are typically concerned about security

in the enterprise networks and the engineers are concerned about system availability and

functionality [19].

15

2.6 ICS Security Mechanisms

There is a need to develop and implement a more robust security mechanism for

ICS networks. Digital Bond has developed an IDS signature package for four different

control system protocols [7]. The signatures are able to defend against known attacks,

malformed protocol requests and rarely used commands. There is a need to discover

previously unknown attacks to create additional signatures for the IDS. Note that the IDS

is designed for the perimeter network layer and not the field device layer.

Another research team, Morris and Pavurapu [27], established a bump-in-the-wire

device that is placed in a network to encrypt, analyze, and log each network packet. This

device is able to defend against response injection, command injection, and denial of

service on a control system. This inline system introduces the risk of compromising

availability of the systems it is protecting if it goes offline.

 Many of the ICS security developments work to incorporate in a layer of

encryption. Balitanas et al. [1] look to add in a crossed-cipher scheme to increase

security through encryption with reduced delay in the system compared to IT encryption

techniques. The authors note that there are significant challenges when implementing

cryptography because of the time requirements of ICS systems and the time delay added

by encryption, decryption and processing time. Unfortunately, this solution would have to

be built into all devices and adds additional latency counter to requirements of real time

environments.

Other secure ICS architectures are described by Pal et al. [31]. The authors take

into account the limitations of limited computational capacity, limited space capacity,

low bandwidth and real-time processing. The architectures discussed each have their

16

own advantages of key storage and distribution among field devices. Each of the

architectures requires a different number of keys to be stored at the field device layer

depending if the field devices need to communicate between each other.

 There are currently inline solutions that have been created such as the EtherGuard

Encryptor developed by Ultra Electronics [41]. These products offer a way to help

increase security; however, if these devices are inline and fail they will disrupt the

availability of the overall system. Additionally, these devices introduce latency in the

network traffic that may be detrimental to the need to operate in a real-time environment

[19].

 Stouffer’s Guide to ICS Security [39] recommends integrating security into

networks through network segregation. The first recommendation is to keep the ICS

system air-gapped from the corporate network. However, Leverett [21] has shown that

many networks are connected to the Internet with or without the network administrator’s

knowledge. Stouffer also presents multiple firewall models to create network segregation

if the network must be connected to the Internet. These models include: a dual-homed

machine (i.e., a system connected to both the controlled ICS network and the corporate

network), firewall between the corporate and ICS networks, a firewall and router between

the corporate and ICS networks, a firewall with a demilitarized zone (DMZ) between the

corporate and ICS networks and two firewalls between corporate and ICS networks.

Stouffer notes that firewalls are not the best solution but that the firewalls do provide an

effective baseline level of security.

 Remote forensics on ICS networks has been demonstrated by Chavez et al. [3]

when they showed that Encase Enterprise can be used to perform forensics on ICS

17

networks. Test results from this research demonstrate the feasibility of conducting

forensics on a field device without disrupting normal operations.

2.7 Network Attack

 Skoudis describes a five step process for attacking a network: Reconnaissance,

Scanning, Gaining Access, Maintaining Access and Covering Tracks and Hiding [37].

Reconnaissance requires discovering as much about a target as possible. Attackers use

common fingerprinting mechanisms to find the machine they are attempting to

compromise. SHODAN, for example, allows an intruder to perform reconnaissance to

find a device vulnerable to an attack. The next step, scanning, occurs when an attacker

knows IP addresses of targeted systems and involves scanning to find potential

vulnerabilities. A common tool used for scanning systems to find more information

about the device is Nmap. Nmap determines which ports are open and potentially

vulnerable to attack. The next step, gaining access, is when the attacker uses an exploit

against a vulnerability to gain access to the system. There are many exploit databases or

tools that an attacker can consult to get a description of an exploit or to launch an

automated attack. Once the attacker has access they use a Trojan Horse or add a

backdoor on the system to maintain the access. Once the attacker knows that they are

able to maintain access on a system, they cover their tracks by installing rootkits,

modifying logs, creating hidden files and establishing cover channels.

2.7.1 Fingerprinting

Fingerprinting is a standard technique used to identify the OS running on the

target system. In control systems, fingerprinting is used to find the make and model of

18

field devices [9]. In the reconnaissance and scanning phases of network attack,

fingerprinting of ICS field devices is performed in a variety of ways. There are four

identifiable elements on most field devices: known set of open ports through port scans,

known behavior of services through banner grabbing, Ethernet header manufacturer tags

and known MAC address space. Through the combination and correlation of these items,

a fingerprint can be produced for a field device.

2.7.1.1 Port Scan

 Most PLCs operate on a select set of proprietary ports. Allen Bradley

devices, for example, run a proprietary protocol, Ethernet IP, over port 44818. If the

device is scanned and port 44818 is determined open, an attacker could conclude that the

device has a likelihood of being an Allen Bradley device. If a port scan identifies a

particular set of open ports, it is likely that the device is from a specific vendor. Devices

that communicate Modbus TCP have TCP port 502 open. Once an attacker discovers

open ports they are able to further fingerprint the device using banner grabbing

techniques.

2.7.1.2 Banner Grabbing

 A device can be correctly identified through banner grabbing via known

responses on open ports. The SHODAN system, used by Leverett during his research,

was able to compile a list of responses from banner grabs against open ports on devices.

Banner grabbing on web servers is very common because many times information

obtained corresponds to a company that manufactures the device.

 Modbus designated port 502 is also susceptible to banner grabbing. The Modbus

TCP protocol makes it mandatory to incorporate the Encapsulated Interface Transport

19

function with the Modbus Encapsulated Interface type Read Device Identification. This

function allows any Modbus TCP connection to read very critical information about the

device. The mandatory objects that must be defined are vendor name, product code and

major/minor revision. The information returned from those three objects identify the

exact device and firmware.

2.7.1.3 Ethernet Manufacturer Tags

 Digital Bond discusses how some devices have manufacturer specific tags

in the Ethernet header of response packets from field devices [9]. This field is placed as a

Ethernet trailer used to designate that the traffic is to a specific device.

2.7.1.4 MAC address

 The last piece that can be used to fingerprint a field device is the MAC

address space of the vendor. Each manufacturer of Ethernet enabled devices is assigned

a MAC address range which can be used to determine the vendor of the device if the

fingerprinting is done on a local segment.

2.8 Emulation

 Emulation is software or hardware that allows one system to imitate the behavior

of another system. This phenomenon is very common in the IT sector with the

development of honeypots. A honeypot is a closely monitored computing resource that is

intended to be probed, attacked or compromised. More precisely, a honeypot is “an

information system resource whose value lies in unauthorized or illicit use of the

resource” [38]. Honeypot technology has been around for many years on the Internet but

only recently has it been introduced in the ICS community. Honeypots were first

20

discussed, in 1990, with the book Clifford Stoll’s The Cuckoo’s Egg and Bill Cheswick’s

“An Evening With Berferd”; the first honeypot was deployed in 1997 [38].

Honeypots are an effective way to detect intruders and to gather malware samples

to create signatures to prevent future attacks. Honeypots add value to the security of a

system by detecting and logging threats and allowing mitigations of such attacks. In a

honeypot, an inbound connection implies the system is being scanned or attacked. This is

the case because honeypots are intended to be dormant with no legitamate traffic sent to

the devices. Outbound connections usually represent a compromise of the system

because honeypots are configured not to send traffic on the network.

2.8.1 Honeypot Overview

There are two types of honeypots: production and research honeypots. Each

honeypot type operates in the same manner but are used for different objectives.

Research honeypots are used to gather malware for further analysis and creation of

detection signatures. Production honeypots add to the overall security posture of an

organization by detecting attacks and mitigating the risk of attackers [38]. Mitigating the

risk is done through many different means such as blocking inbound connections from

the specific IP address.

 Honeypots mainly consists of two variations: low-interaction and high-interaction

honeypots. Low-interaction honeypots consists of emulated services and operating

systems which provide targets. These honeypots are easily fingerprinted as they only

emulate the basic services. High-interaction honeypots provide real systems applications

and services for the attacker to interact with. High-interaction honeypots are difficult to

21

set up because they need to be secure enough so an attacker cannot use the machine to

attack other machines in the network [38].

2.8.2 Advantages of Honeypots

 Honeypots afford advantages including valuable data, resources, simplicity and

return on investment [15]. The first advantage is the value in the data collected.

Honeypots only collect data when interacted with, making the data much more

manageable to analyze than traditional network logging systems. Additionally,

honeypots reduce the amount of false positives because any interactions indicate

unauthorized traffic. Honeypots are able to detect many more attacks because any

activity in the honeypot is an irregularity which makes novel attacks easier to identify.

This is more effective than alternatives that use signatures which require previous

identification of the attack.

 Honeypots require minimal resources for employment. Honeypots can be set up

on aging computers because they have little interactions and typically do not have to deal

with resource exhaustion. Even large networks only require one or two systems to

monitor any kind of attack on the network.

 Honeypots are also very simplistic. One does not have to keep up with signature

sets or rule sets; someone just needs to place the honeypot somewhere in the network and

then wait for the attack. Some honeypots are more complex but all follow the same

simple premise: if something interacts with the honeypot it is ilegitimate communication

and needs to be examined [38].

22

 The last advantage to honeypots is the return on investment. Honeypots are cost

effective because of minimal resource requirements. Honeypots also demonstrate that if

it has been attacked that someone has been able to infiltrate the network [38].

2.8.3 Disadvantages of Honeypots

 While honeypots have many advantages, they also have disadvantages. The first

disadvantage is that they have a narrow field of view. Honeypots only see what traffic is

directed at the honeypot. If the attack is never directed at the honeypot it will never

detect the attack.

 Honeypots are also susceptible to fingerprinting. Fingerprinting occurs when an

attacker can identify the true identity of the honeypot because of certain characteristics or

behaviors [38]. If the attacker can correctly identify the honeypot, he can avoid it when

attacking the network. While uncommon, fingerprinting can also be done if the

programming of the honeypot has misspelled a word somewhere which alerts an attacker

when the response is sent back to the attacker.

 The last disadvantage is the risk that a honeypot introduces into the network.

While the amount of risk each type of honeypot introduces into the environment is

different, the risk is still present. Once a honeypot has been attacked and compromised it

can be used to attack, infiltrate or harm other computer systems in the organization or

other organizations [15].

2.8.4 Honeypot Attributes

 There are three fundamental requirements of honeypots: data control, data capture

and data analysis. The first, data control, is used for mitigation of risk through the

containment of the activity of the attacker. This is accomplished by controlling what an

23

attacker is able to do once on the honeypot. Note that it is important to make sure that

once the honeypot is compromised, another system cannot be compromised by it. A

common way to do this is with a fail-safe that prevents all outbound connections from the

honeypot once compromised. Honeypots should also alert when a system has been

compromised to notify an administrator of the event.

 Data capture is the next fundamental requirement which includes logging and

auditing functions. The most common way to collect the data is with a layer two bridge

that collects any traffic that has been directed to or from the honeypot. Note that nothing

should be stored on the local honeypot machine to prevent fingerprinting information for

the honeypot to the attacker.

 The last requirement is data analysis which is the synthesis of information

gathered from the honeypot. If multiple honeypots are implemented across a large

network spanning multiple time zones the information needs to be standardized and have

synchronized time stamping to correlate the data. This is important for analyzing the

attack methods to ensure continuity between collection methods [15], [16].

2.8.5 Honeypot Technology in IT

 There are many different solutions developed for the IT sector. The following set

of solutions are indicative of current honeypots in IT. The first solution in the IT sector is

honeynets. A honeynet is a “high-interaction honeypot designed to capture extensive

information on threats “[16]. A honeynet is an architecture with multiple, networked

honeypots. Each of the honeypots in the network can be different systems ranging from

Windows workstations to IIS web servers to Cisco routers. Honeynets rely on the same

basic principles that honeypots follow in that they are not productions systems so that any

24

communication with these systems is considered malicious. In the paper “Know Your

Enemy: Honeynets [16]” The Honeynet Project states:

“In many ways a honeynet is like a fishbowl. You create an environment

where you can watch everything happening inside it. However, instead of putting

rocks, coral, and sea weed in your fish bowl, you put Linux DNS servers, HP

printers, and Juniper routers in your honeynet architecture. Just as a fish interacts

with the elements in your fishbowl, intruders interact with your honeypots”[16].

Figure 2.4 shows an example of a typical network configuration of a honeynet. The most

critical component to a honeynet is a Honeywall.

 A Honeywall is a transparent bridge that is setup to enable data capture, data

control and data analysis. Honeywall is configured with three interfaces, two for the

Figure 2.4: Network setup for Honeynet [16].

25

transparent bridge and one for management. A transparent bridge has no IP address so all

the traffic passes promiscuously through the device. The third interface is configured for

th management network to enable remote control of the Honeywall. Honeywall limits

malware damage by implementing a fencelist (i.e., a list of IP’s for non-target computers

which honeypots on the LAN cannot communicate with). Honeywall uses snort-inline

[23] as an intrusion protection system to prevent attackers from sending known exploits

to other machines once the machine is compromised. The number of connections out is

typically filtered from the Honeywall to prevent too much activity once the box has been

compromised. Honeywall also uses the monitoring system Sebek [35].

 Sebek is a client-server data capture tool which closely monitors and logs all user

activity. Sebek replaces several common system calls which can then observe all

accessed data [35]. Sebek is a kernel-level rootkit which hooks and replaces common

calls. Sebek has the following capabilities: record keystrokes of a session that is using

encryption, recover files copied with SCP, capture passwords used to log in to remote

Figure 2.5: Typical Sebek deployment [14].

26

system, recover passwords used to enable Burneye protected binaries and accomplish

many other forensics related tasks [14]. In Figure 2.5, the client module is installed on

the honeypot A. The attacker’s activity captured by the honeypot is then sent to the

network and passively collected by the server (Honeywall Gateway). Sebek data is not

stored on the target, but rather transmitted via UDP to the sniffing honeywall or

designated log server. Packets are masked from the attacker, even if a sniffer is run on

the target through the use of a special Kernel module created to interact directly with the

network device driver instead of using the TCP/IP stack [14].

 Honeyd is another common honeypot solution. Honeyd is an open source low-

interaction virtual honeypot. Honeyd has the capability to simulate thousands of virtual

systems on one single physical system. Figure 2.6 shows a sample configuration of

honeyd. Honeyd is able to provide arbitrary services, via a configuration file, that

interact with an attacker. Honeyd simulates each operating system at the TCP/IP level

which provides honeyd the ability to deceive Nmap into believing the virtual honeypot is

an actual operating system.

Figure 2.6: Sample configuration of Honeyd [35].

27

2.9 Honeypots in ICS

 Honeypots are useful in ICS networks to help improve the overall security

posture. Today there is no nominal way to detect malware running on PLCs. Consider

the case of Stuxnet which was on the PLCs for a year before being detected [10]. Indeed,

a honeypot for ICS would help identify malware currently in ICS networks and an ability

to study any future malware.

Honeypots aid in the overall security posture through prevention, detection and

response. Honeypots help with prevention by acting as an early warning of an attack. A

honeypot generates an alert for any connection allowing an administrator to block the IP

address and prevent the user from attacking any other machines. Some honeypots use

deception or deterrence to prevent attackers from further attempts to attack the system.

Deception involves making the attacker waste time on a honeypot that has no value and

deter them from trying to attack production machines. Deterrence is used when the

honeypot is coded to inform the attacker that the box they are interacting with is a

honeypot in an attempt to dissuade them from attacking the network any further.

 Honeypots also add to ICS security posture through detection. Honeypots are an

effective way at detecting attacks through reducing false positives, false negatives and

through data aggregation. The last way that honeypots add to the overall ICS security

posture is through response. Honeypots collect all the data to and from the system so the

data necessary to respond to an incident can be retrieved by the incident responder. The

honeypot can also be taken offline for further analysis without affecting production

systems [38].

28

 There are many IT solutions currently developed; however, these solutions are not

readily applicable to ICS networks. The IT honeypots are not effective because the cost

of solutions to disseminate across ICS is too high. Additionally, solutions that place a

honeypot in line with a production device creates a point of failure which could disrupt

the availability that is critical to ICS networks. Current IT solutions are also not

applicable to ICS networks due to the nonstandard communication protocols.

2.9.1 Current Honeypots in ICS

 Even with the current landscape and challenges, some solutions have been

proposed for ICS networks. The first solution is a SCADA Honeynet that was started in

2004 utilizing Honeyd, simulating a limited set of services from a popular PLC [32]. The

goals of this project were to create a framework to simulate a variety of industrial

networks on a single Linux host running honeyd (e.g., minimal Modbus TCP functions,

FTP, Telnet, and web server). These servers are only basic simulations and offer a

limited number of functions to interact with. The work is no longer maintained; however,

a follow on was initiated by Digital Bond.

 The work by Digital Bond utilizes two separate virtual machines. One of the

virtual machines is a modified Honeywall which implements Digital Bond SCADA IDS

signatures to detect malicious attacks against the second virtual machine [8]. This is an

efficient tool that can also be used in line with a physical device as well. Note that this

introduces latency and could fail causing communication to the physical device to fail.

The second virtual machine is a simulated PLC that exposes a number of services to an

attacker [8]. Digital Bond implements Modbus TCP protocol, FTP server, Telnet, HTTP

and SNMP servers. These services are much like the other project in that they only

29

simulate the banner for the different protocols and minimal basic functions. Figure 2.7

shows the configuration of the two virtual machines from Digital Bond.

These solutions are both efficient solutions but are only designed for a particular

PLC or particular protocol. The solutions require more modularity to allow expansion

into the majority of protocols and devices in ICS networks.

2.9.2 Emulation Requirements

ICS honeypots have extra challenges associated because of the variety of ICS

networks. There are many manufacturers of PLCs, differing protocols, and system-

specific configurations for ICS networks. This makes it challenging for a single

honeypot solution to emulate a variety of systems. Additionally, each PLC has different

field devices ranging from sensors to valves. As a result, each PLC has a different

configuration to control each of these field devices.

Figure 2.7: SCADA Honeynet configuration [8].

30

 When a honeypot detects a new attack, an analyst can analyze it to create a

signature to input into the IDS to prevent the attack in the future [18]. This idea is

restated by the Department of Energy when they provided the “21 Steps to Improve

Cyber Security of SCADA Networks.” Number eight in the list is to implement internal

and external IDS and establish 24-hour-a-day incident monitoring [4].

2.10 Summary

 This chapter explains ICS, critical infrastructure protection, emulation and the

current technology surrounding honeypots. It details current ICS honeypots and short

comings with the current technology. ICS honeypots need to be modularized and allow

easy reconfiguration. This chapter demonstrate the necessity for additional security in

ICS networks and how current IT solutions are not capable of protecting the vastly

different ICS networks. The next chapter discusses the methodology used to evaluate the

effectiveness of the ICS honeypot created as part of this research.

31

III. Methodology

 This chapter discusses the methodology for evaluating an emulated PLC to

determine if the device responds to basic network traffic and can avoid common

fingerprinting techniques. Successful emulation of a PLC utilizing Modbus TCP traffic

is contingent upon the device (1) correctly responding to standard traffic, (2) avoiding

being fingerprinted as a Linux machine using common ICS fingerprinting techniques and

(3) correctly handling invalid traffic.

3.1 Problem Definition

3.1.1 Goals and Hypothesis

 The goal of this research is to include attack detection within Industrial Control

Systems (ICS) at the field device level through development of an inexpensive,

configurable and portable emulation device that contains logging capabilities.

 It is expected that the emulated PLC responds according to RFC standards with

any user that may try to interact with it directly. It is expected that the device responds to

all traffic sent to the device in a valid manner and be able to log all interactions with the

emulated PLC. It is also expected to respond as an operational PLC to common ICS

fingerprinting techniques (i.e., Port Scan, MAC Address, and Banner Grabbing).

3.1.2 Approach

 This research determines the effectiveness of the emulated PLC at emulating an

operational PLC. Allen Bradley PLCs are used as a baseline for fingerprinting tests and

invalid traffic tests while the Modbus TCP RFC is used as the baseline for standard

traffic response tests. The emulated PLC is evaluated to see how responses compare with

32

the baseline and if the interaction is logged. The emulated PLC and Allen Bradley PLCs

are subjected to a variety of tests outlined in Section 3.3 to determine if the devices

respond in the appropriate manner with the corresponding baseline. Analysis of the

results is examined to determine the effectiveness of the emulated PLC at detecting

traffic on ICS. Additionally, a qualitative analysis using Air Force ICS assessors is used

to provide a notional evaluation of the effectiveness of emulating an operational PLC.

3.2 Environment

Figure 3.1 shows the environment used for the following experiments. The HMI

is a Windows 7 64 bit SP1 machine running Triangle MicroWorks Protocol Test Harness,

Nmap and Wireshark. Triangle MicroWorks Protocol Test Harness is a package that has

been designed to test PLC devices to determine if they conform to protocol standards.

The HMI has a 500GB hard drive with 4GB of memory. The PLCs are a factory install

of an Allen Bradley Micrologix 1100 and an Allen Bradley CompactLogix 1769. The

Figure 3.1: Network diagram.

33

emulated PLC is an Overo Earth COM Gumstix. Gumstix is a mini computer, not

surprisingly, about the size of a stick of gum (see the bottom of Figure 3.2). It runs a

Linux based platform using the Open Embedded framework and costs approximately

$200 [12]. The Gumstix board has an ARM Cortex-A8 CPU, 512MB of flash memory

and 512MB of RAM with a microSD card slot to be used as non-volatile storage. In the

case of this research, an 8GB microSD card is used. Gumstix computers leverage

expansion boards to extend IO capabilities to a range of operations (e.g., GPS, bluetooth,

and 802.11 wireless). For this research, the Tobi-Duo expansion board (shown in the top

of Figure 3.2) is incorporated to provide a dual NIC configuration allowing a primary

NIC for ICS communication and another NIC for out-of-band logging. The Gumstix

Overo CPU board snaps onto the Tobi-Duo expansion board for quick connection. The

operating system is Linux 2.6.34 built and installed on the device. Appendix A provides

Figure 3.2: Representative Gumstix device.

34

the steps required to build the emulated PLC. The logging device is an Ubuntu 11.10

Machine with a 120GB hard drive with 2GB of memory running syslog server capturing

the logging entries sent from the emulated PLC. The systems are connected with CAT5e

cable which supports up to 100MB/s connection. Figure 3.1 shows that both the

emulated PLC and the Allen Bradley PLCs communicate directly with the HMI. The

figure depicts that the emulated PLC can sit in a network next to any vendor specific

device (e.g., Siemens, Omron, Allen Bradley). For testing purposes, however, the PLCs

that are connected to the switch are an Allen Bradley MicroLogix 1100 and an Allen

Bradley ControlLogix 1769. The emulated PLC also communicates with the data

logging device through logs sent out the secondary NIC.

3.3 Evaluation Technique

3.3.1 Functionality Test through Modbus Traffic Emulation

 The Modbus traffic test cases are used to verify the ability of the emulated PLC to

communicate in accordance with Modbus RFC standards. Although there are numerous

Modbus TCP standard function codes, the most commonly used include:

 Read Coil

 Write Coil

 Read Discrete Inputs

 Read Holding Registers

 Write Holding Register

 Read Input Registers

 Each of the function codes listed above is sent in accordance with Triangle

MicroWorks and Modbus Poll evaluation process to the emulated PLC in order to verify

proper responses. The commands are sent in the order shown above with thirty seconds

35

in between each packet being transmitted. Note that the focus of these tests is to evaluate

operational functionality; analysis on traffic rate limits is recommended for future work.

The following two software packages are used to test the emulated PLC against the traffic

standard:

1. Triangle MicroWorks Protocol Test Harness

2. Modbus Poll

Triangle MicroWorks Protocol Test Harness is a software package created to test if a

device adheres to the Request for Comments (RFC) for a given protocol. This checks the

response packets bytes to make sure that the packet is a valid packet. If the packet is

valid the Test Harness logs each response received, and if the packet is invalid the Test

Harness times out waiting for a valid response. Modbus Poll is a free software package

created to communicate with Modbus enabled devices. This software is also used to

communicate with the emulated PLC to see if the responses are considered valid.

The following steps outline how to complete each test case. First, the emulated

PLC is attached to the switch and the logging device using CAT5 cables. After the

device is turned on and both Ethernet NICs have been initialized then, SSH is initiated

from the logging device to the emulated PLC. The command ‘ifconfig’ is run to

determine the IP address of the emulated PLC. Next, the command ‘ps –ef’ is run and

then viewed to make sure that both tcpdump and the python script are initiated. On the

HMI, Wireshark is started to capture the network traffic to and from the emulated PLC.

The software indicated in the test case (i.e., Triangle MicroWorks or Modbus Poll) is

then started, and each of the six most popular Modbus TCP commands listed above are

initiated by the software. After the six commands conclude, the software and Wireshark

36

are stopped and the capture saved for analysis. An SSH session is then initialized to the

emulated PLC and the pcap created from tcpdump is retrieved. The syslog on the logging

machine is also saved. The emulated PLC is then restarted to make a consistent starting

point for each test.

The emulated PLC is successful if the program used for testing is able to receive a

valid response from the device. The traffic is analyzed to see if the Modbus Wireshark

dissector is able to determine that the traffic being sent from the emulated PLC is

Modbus TCP. The test is not successful if the device does not respond in an expected

manner.

The emulated PLC must keep state as part of the functionality such that if a coil is

turned from off to on, subsequent reads indicate the coil is now turned on. This test is

successful if a second Read Coil response shows the coil has transitioned status. The test

is unsuccessful if the response to the second Read Coil shows that the coil did not

transition state.

3.3.2 Fingerprinting Test Cases

3.3.2.1 Port Scan Test Case

The intent of the emulated PLC is to act as an operational PLC and avoid being

fingerprinted as a Linux device. The most common way to detect a device is through

port scanning with a tool such as Nmap. Nmap is run to scan the device for open ports

but can also attempt to determine the operating system (OS) that the device is running. In

the Port Scan Test Cases the following devices are scanned:

1. Emulated PLC

2. Allen Bradley MicroLogix 1100

37

3. Allen Bradley ControlLogic 1769

These scans determine if it is possible to fingerprint the device as an emulated PLC

through scanning and examining the results against the scans of two Allen Bradley

devices that are configured to communicate over Ethernet/IP (port 44818). The Allen

Bradley devices do not communicate over Modbus TCP so the devices do not have port

502 open as the emulated PLC; however, they do have a standard ICS communication

protocol (Ethernet/IP port 44818) that is open in the same manner as the Modbus port for

the emulated PLC.

The following outlines how to complete each test case. First the emulated PLC is

connected to the switch and the logging device. Both Allen Bradley devices are

connected to the switch with Ethernet cables. After the emulated PLC is turned on and

both Ethernet NICs have initialized then SSH is initiated from the logging device to the

emulated PLC. The command ‘ifconfig’ is run to determine the IP address of the

emulated PLC. Next, the command ‘ps -ef’ is run and then the results are viewed to

make sure that both tcpdump and the python script are initiated. On the HMI, Wireshark

is initialized on the Ethernet port to capture the network traffic to and from the emulated

PLC and Allen Bradley Devices. Nmap is also initialized on the HMI. An Intense Scan

including all TCP ports is done against each of the devices listed above. After the Nmap

scan has completed Wireshark is stopped. The Wireshark and Nmap captures are saved

for analysis. After the scan of the emulated PLC an SSH session is initialized to the

emulated PLC and the pcap created from tcpdump is retrieved. The syslog on the logging

machine is also saved. Another scan of the Allen Bradley devices is also accomplished to

run the OS detection scan against just the ICS communication port and one closed port

38

(e.g. <IP address> -O -p 44818-44819). The emulated PLC does not currently implement

a web server so the second Nmap scan provides a closer representation of what the

emulated PLC results should look like. Future work includes implementation of a web

server on the emulated PLC to provide a closer representation of modern PLCs.

The Nmap scan on the emulated PLC is successful if only the ICS communication

port, TCP port 502, appears to be open. If the OS scan on the emulated PLC results are

the same as that of the OS scan specifically targeting the open ICS communication port

on the Allen Bradley devices then the test is considered successful. The test is not

successful if the OS on the emulated PLC is not the same as the Allen Bradley devices.

3.3.2.2 MAC Address Resolution Test Case

MAC Address Resolution is a common fingerprinting technique common to ICS

field devices. The emulated PLC is tested to verify that the MAC address resolves to a

known ICS vendor. The Wireshark traffic from both the Modbus Traffic Emulation test

cases and the Nmap scan are examined to see if the MAC address resolves to a known

ICS vendor. The results of the Nmap scan are also examined to see if the MAC address

resolves to a known ICS vendor.

The MAC Address Resolution succeeds if the MAC addresses in all the

Wireshark captures are the same and resolve to a known ICS vendor. The MAC address

must also resolve in the Nmap scan to succeed. The MAC Address Resolution fails if in

any of the captures the MAC address does not indicate a known ICS vendor MAC

address.

39

3.3.2.3 Banner Grabbing Test Case

Banner Grabbing is another fingerprinting technique common to ICS field

devices. This test case tests that the emulated PLC can respond to banner grabbing

request on the Modbus TCP port. The following states how to configure the emulated

PLC for this test case. First the emulated PLC is connected to the switch and the logging

device. After the device is turned on and both Ethernet NICs have been initialized then

SSH is initiated from the logging computer to the emulated PLC. The command

‘ifconfig’ is run to determine the IP address of the emulated PLC. Next, the command

‘ps -ef’ is run and then the results are viewed to make sure that both tcpdump and the

python script have initiated. On the HMI, Wireshark is started on the Ethernet port to

capture the network traffic to and from the emulated PLC. Triangle MicroWorks

Protocol Test Harness is then started on the HMI. The Modbus TCP command Device

ID is then sent to banner grab the information from the emulated PLC. This command

helps to correctly identify a device because the response sends information such as the

vender name and product name. Note that this command is a Modbus command and

therefore cannot be run against either of the Allen Bradley devices. After the command

has completed, Triangle MicroWorks and Wireshark are stopped. The Wireshark capture

is saved for analysis. An SSH session is initialized to the emulated PLC and the .pcap

created from tcpdump is retrieved. The syslog on the logging machine is also saved.

The banner grabbing on the emulated PLC is successful if Triangle MicroWorks

is able to receive a valid response from the emulated PLC. Successful emulation of this

command gives another way that an attack can fingerprint the emulated PLC as an

40

operational PLC. The test is not successful if the device does not respond in a manner

that Triangle MicroWorks is expecting.

3.3.3 Invalid Traffic Test Cases

This test is used to make sure that when an invalid packet is received by the

emulated PLC it responds in the same manner as an operational PLC. This test

incorporates the emulated PLC and both the Allen Bradley devices.

The devices are configured as in Section 3.3.2.1 Port Scan. The only difference is

that Scapy is started on the HMI to allow for the creation of an invalid TCP packet to be

sent to each of the devices. Scapy sends an invalid SYN packet with a NULL TCP

checksum and then waits for a response. After 60 seconds Scapy then sends a valid SYN

packet verifying that the device is responsive. After Scapy has completed sending the

packets Wireshark is stopped. The Wireshark capture is saved for analysis. After the

invalid traffic to the emulated PLC has completed an SSH session is initialized to the

emulated PLC and the .pcap created from tcpdump is retrieved. The syslog is also saved

for analysis.

The invalid traffic test case on the emulated PLC is successful if the response

from the emulated PLC matches that of the Allen Bradley devices. The test is not

successful if the device does not respond in a similar manner to that of the Allen Bradley

devices. This test is emulating a standard IT practice of fingerprinting a device through

responses received to certain invalid packets.

3.3.4 Logging Capabilities

Logging on the emulated PLC is important to be able to capture any interaction

that an attack may have with the emulated PLC. The logging of the emulated PLC is

41

tested in the Modbus traffic emulation, port scan, banner grabbing and invalid traffic tests

as described above. For each of the tests the number of packets captured on the emulated

PLC are compared to the number of packets captured on the HMI. The syslog on the

logging device is also checked for each test to see if each of the commands sent to the

emulated PLC are correctly logged.

The logging of the emulated PLC is successful if both of the following conditions

are met: (1) the number of packets captured on the emulated PLC match the number of

packets sent from the HMI and (2) each of the commands sent to the emulated PLC are

correctly logged.

3.3.5 Qualitative Evaluation

A qualitative analysis is conducted through work with a member of the Air

National Guard’s 262
nd

 Network Warfare Squadron. The 262
nd

 is based at McChord Air

Force Base outside Tacoma, Washington and attracts people from many tech companies

such as Microsoft, Cisco Systems and Adobe Systems. A member of this unit analyzed

the emulated PLC for fingerprinting techniques. The 262
nd

 does ICS assessments on Air

Force networks which gives them the capability of comparing the emulated PLC to

operational devices.

The emulated PLC is provided to one of the members of the Air National Guard’s

262
nd

. The member uses their available testing environment and techniques for the

evaluation. The evaluation is considered successful if the member reports that the

emulated PLC is not distinguishable from an operational device. Note that specific

techniques used to evaluate this device are not considered important; the goal is to see if

42

an experienced assessor determines the emulated PLC is consistent with an operational

PLC.

3.4 Methodology Summary

 This chapter provided the methodology for evaluating the emulated PLC. The

Modbus traffic emulation of the emulated PLC is examined with: valid Modbus traffic,

fingerprinting techniques and invalid traffic. Modbus traffic is used to examine if the

emulated PLC functionality is the same as that of an operational PLC. Fingerprinting

techniques are used to study the case of an attacker scanning the emulated PLC. The

invalid traffic is used to see if the emulated PLC is able to respond in the same manner as

a PLC by other typical IT methods of fingerprinting. These tests are all accomplished to

simulate possible network traffic a device may receive when emulating a PLC. During

each of the tests, the logging capabilities are verified for capture on the emulated PLC as

well as remote logging capabilities. The qualitative analysis is conducted by an ICS

security expert who is able to give an evaluation on how well the emulated PLC emulates

an operational PLC.

43

IV. Analysis and Results

 Results of this research are organized as the following: Section 4.1 discusses the

development of the emulated PLC. Section 4.2 describes the emulated PLC initialization

checks prior to running the test. Section 4.3 presents the results from the functionality

checks with valid Modbus Traffic, fingerprinting techniques, invalid TCP traffic, logging

capabilities and the qualitative evaluation given by a subject matter expert. Section 4.4 is

the analysis of the results given in Section 4.3, and Section 4.5 summarizes all the results.

4.1 Development of emulated PLC

4.1.1 Architecture

Device implementations for ICS field devices more closely resemble cell phones

than traditional information technology platforms. Indeed, there are myriad vendors,

model numbers, configurations, chipsets and different operating systems/firmware for

each associated device [36]. While the devices are quite unique in platform

characteristics, PLCs that implement Modbus TCP conform to the RFC protocol

specifications in order to enable inter-device communication. Although the emulated

PLC does not contain input/output functionality for analog and digital signals to control

physical devices, it can be programmed to respond appropriately to Modbus

communications. For this research, the emulated PLC was programmed according to

RFC specifications to incorporate common function codes identified in Chapter 3.

The emulated PLC is incorporated into ICS operations similar to other PLC field

devices. Note that the emulated PLC can be readily modified to emulate various PLC

vendors (e.g., Siemens, Omron, and Allen-Bradley). PLC identification is determined by

44

MAC addresses assigned to the various vendors. The emulated PLC can be set to

respond with any MAC address such that if correlated, it resembles the associated vendor

product. Additionally, the emulated PLC incorporates an out-of-band logging capability

to record and report on specified criteria (e.g., unexpected traffic patterns, attempt to

read/write unauthorized parameters and unexpected function codes).

4.1.2 Implementation Details

The program that provides the emulation capability was developed using Python

with the Scapy 2.2.0 module. Additionally, tcpdump is implemented on the ICS-facing

NIC to allow capture of network traffic and storage as pcap files. Syslog is used to send

alerts and traffic files to a remote logging device via the other NIC. The emulated PLC is

readily configurable to respond to operating parameters in the same manner as an

operational PLC. The emulated PLC maintains system state in the event that function

parameters are modified. For example, if a message is received to write to a single coil

(e.g., close a valve) and a subsequent message requests a read for the same parameter

(e.g., status of the valve), the emulation device will respond with the updated state (e.g.,

valve closed). Additionally, if an unrecognized function code or transaction message is

received, the emulated PLC responds with an appropriate unrecognized error code. If

traffic is received on a port other than the designated TCP port 502 (Modbus), the PLC

emulation device responds with a simple RESET ACK; however, the action generates a

logging event. Such traffic may be indicative of a port scan.

For logging purposes, any received traffic that is not consistent with pre-defined

parameters generates an event. Consider, for example, the configuration of the PLC

emulation device to continually respond to read requests for various defined parameters.

45

The PLC emulation device is expecting to receive the message traffic precisely as

specified; any traffic not conforming generates an event. Alternatively, the PLC

emulation device can be deployed to a segment without a specific configuration for

expected message traffic. In this scenario, the PLC emulation device serves as a

traditional honeypot and can indicate attempts to scan the network for ICS devices.

Emulating a traditional PLC for open ports is accomplished by implementing

iptables to make all ports appear closed on the ICS-facing NIC, with the exception of port

502. The Scapy module generates packets from the PLC emulation device to craft

messages consistent with Modbus standards. Additionally, a startup script is included

that changes the MAC address to a specified value to correspond with a PLC vendor.

Banner grabbing is implemented for the Modbus TCP communication service emulated

on TCP port 502. For purposes of this research, replicating additional services to respond

to banner grabbing or other identified fingerprinting techniques are not implemented.

Future work for the PLC emulation device consists of developing such functionality.

4.2 Emulated PLC Initialization Checks

 Prior to sending traffic to the devices in the test cases, the emulated PLC is

checked to validate that the necessary services are running. The services required are as

follows:

 PLC emulation (canary.py)

 Tcpdump

 Network communications

 Syslog

The detailed steps for verifying services are as follows:

46

1. SSH connection is initiated from the logging device to the emulated PLC

a. Run the command ps-ef

i. Check the results and verify python and tcpdump are running

2. A command window is opened on the HMI

a. The command ping <IP address of emulated PLC> is initiated

b. The command window is checked for a valid response

c. The syslog on the logging device is then checked to confirm that the

packet is recorded

 For each test the emulated PLC successfully initialized and the processes

correctly started.

4.3 Results

4.3.1 Functionality Test through Modbus Traffic Emulation

The tests from the two software programs emulating Modbus TCP traffic

demonstrate the emulated PLC conforms to RFC standards. Table 4.1 shows that for

each software package all six commands initiated by the test harness received valid

responses.

Table 4.1: Modbus TCP traffic tests.

Software Messages Sent Valid Responses Invalid Responses

Triangle MicroWorks

Protocol Test Harness
6 6 0

Modbus Poll 6 6 0

47

The findings indicate that the responses of the emulated PLC conform to RFC

standards for Modbus TCP. Figure 4.1 shows the read coil response from the emulated

PLC correctly dissected in Wireshark, indicating a valid response. The correct dissection

of the response in Wireshark further demonstrates that the response adheres to the RFC

standard for Modbus TCP. Figure 4.2 shows the statistics on Triangle MicroWorks

denoting that all six responses are valid. The Responses Received field identifies when

the response is valid and conforms to RFC standards. Requests Failed, Requests Timed

Out, and Channel Errors indicate erroneous or invalid responses.

Figure 4.2: Triangle MicroWorks response statistics.

Figure 4.1: Read coil response Wireshark dissection.

48

The other tested functionality is the ability of the emulated PLC to maintain

appropriate state. Figure 4.3 shows the request and response of the traffic dissected in

Triangle MicroWorks. The first read shows that coil 1 is set to off (0). The coil is then

turned on (ff) and the status displays on (1) for the subsequent read. The findings

demonstrate the ability of the emulated PLC to update and maintain state.

 The emulated PLC provides functionality for six Modbus commands according to

the RFC standards. The test used to evaluate the functionality of the six commands is

consistent with industry standards used to evaluate an operational PLC before deploying

to the field. While only six commands are implemented in this iteration, incorporating

additional commands is trivial.

Figure 4.3: Read, Write, Read dissected in Triangle MicroWorks

49

4.3.2 Fingerprinting Techniques

4.3.2.1 Port Scan

The port scan using the software package Nmap identifies open ports and

provides OS detection. When the emulated PLC is scanned with the intense scan all TCP

ports the results show TCP port 502 open and all other ports closed. The results are

indicative of a PLC device communicating Modbus on port 502. Note that the Allen

Bradley devices use Ethernet/IP as opposed to Modbus for ICS communication. Scan

results for both Allen Bradley devices similarly show a native ICS communication

protocol Ethernet/IP on port 44818.

For baseline purposes, an Nmap scan was performed against the Overo Gumstix

with the Linux image and resulted in ports 22 and 111 open and an OS detection result of

Tomato 1.27 (Linux 2.4.20). The Overo Gumstix was then configured to the emulated

PLC. The OS detection results is ‘none’ because the results failed to match any operating

systems in the Nmap OS database. A similar scan for the Allen Bradley devices also

resulted in ‘none’. The scanning methodology is indicative of an attacker scanning a

device to identify open communication ports and attempting to identify the OS to

fingerprint a device prior to launching an exploit. The findings demonstrate that an

attacker scanning the emulated PLC with Nmap would infer the device to be an actual

PLC due to the manner the emulated PLC responds consistent with a PLC

communicating Modbus.

4.3.2.2 MAC Address Resolution

The MAC Address resolution test demonstrates the ability to mimic manufacturer

device identifiers. Figure 4.4 shows that the MAC address of the emulated PLC resolves

50

to a Siemens PLC when examined via Wireshark. This is consistent with all traffic

captures associated with the emulated PLC; in each test the MAC address appropriately

resolved to a Siemens PLC.

During the Nmap scan of the emulated PLC, the MAC address resolution, shown

in Figure 4.5, also resolves to a Siemens Automation device. With the OS scan coming

back as negative an attacker examining the MAC address resolution and open ports likely

concludes the device is indeed a PLC.

Figure 4.5: Nmap MAC address resolution.

4.3.2.3 Banner Grabbing

The next common fingerprinting technique in ICS field devices is banner

grabbing. The Modbus TCP function code for Encapsulated Interface Transport-Device

ID x43 x14, allows a user to retrieve information about a PLC, such as the vendor name

and product code. For the banner grabbing test, Triangle MicroWorks Protocol Test

Harness initiates the protocol messages. Figure 4.6 demonstrates a successful response

from the emulated PLC conforming to the RFC standard. Figure 4.7 provides the values

in detail for each of the three objects returned in response to the command. Device object

Figure 4.4: Read coil response Wireshark dissection.

51

zero is the vendor name, object 1 is the product code and object 2 is the major minor

revision. The Conformity Level means that the information is basic information about

the PLC and the next object ID is only used if the information cannot be encapsulated in

one packet. The emulated PLC for the banner grabbing test is configured to appear to be

an Allen Bradley, showing the adaptability of the emulated PLC to emulate multiple

device types. The results show the device is an Allen Bradley MicroLogix 1500 V1.12.1.

Figure 4.6: Triangle MicroWorks response statistics for banner grab.

Figure 4.7: Response to banner grab in Triangle MicroWorks.

 Note that the banner grabbing is only tested for the Modbus protocol implementation.

As services are added to the emulated PLC (e.g., web servers), the device requires

evaluation of banner grabbing techniques for the service added.

52

4.3.3 Invalid ICS Traffic

The emulated PLC was evaluated for the ability to handle invalid ICS traffic. A

SYN packet with an invalid checksum was sent to each of the PLC devices. As

demonstrated in Table 4.2, each device appropriately dropped the invalid packet.

Appendix C.3 provides screen captures of the traffic in Wireshark for each device. Note

that there is no response to any of the request packets. The second packet in each capture

is a valid SYN packet followed by a response from each of the PLCs. The results

demonstrate that the device is functioning and checks for valid TCP checksums.

Table 4.2: Response to valid/invalid TCP checksum.

Device
Response to Invalid

Checksum

Response to Valid

Checksum

Emulated PLC No Yes

Allen Bradley ControlLogix

1739
No Yes

Allen Bradley MicroLogix

1100
No Yes

4.3.4 Logging Capabilities

The logging capability is designed to record any interaction with the emulated

PLC. The traffic captured on the emulated PLC using tcpdump and logged on a remote

logging device. During the valid Modbus TCP traffic, the connection with the emulated

PLC is logged, all six commands are logged and the connection tear down with the

emulated PLC is logged. Figure 4.8 shows the syslog entry connection and commands

from the Triangle MicroWorks functionality test.

53

Figure 4.8: Syslog entries of interactions with the emulated PLC.

Appendix C.1 provides screenshots of all the packets captured for the HMI and on the

emulated PLC. Both figures show that there are 23 packets transmitted during the test

case for both Triangle MicroWorks and Modbus Poll, demonstrating the ability to

correctly log the interactions.

 During the state functionality test, the emulated PLC and the HMI captured 14

packets. Appendix C.1 provides screenshots of both Wireshark captures displaying the

packets communicated across the channel. Figure 4.9 below shows that the logging

device is able to log all the traffic sent to it during the test. The connection and tear

down, both the read commands, and the write command are all logged.

Logging is also examined during the port scan against the emulated device. The

number of packets captured on the emulated PLC is compared to the number of packets

captured on the HMI. During the intense scan of the emulated PLC, tcpdump fails to log

all the packets. The amount of packets that are captured on the HMI is 147,295 packets,

compared to only 44,838 packets captured on the emulated PLC. The device is able to

respond to all operational traffic; however, it is not able to log all messages. The

tcpdump records packets for approximately eleven seconds then ceases to log packets for

approximately fifteen minutes while it responds to the network traffic load. While not

Figure 4.9: Syslog entries from read, write, read test.

54

every packet was checked for a response during the test a look through the Wireshark

capture on the HMI appeared as though the emulated PLC is able to respond to all the

packets being sent to the device. It appears as though the CPU cycles during this period

of time are all allocated for the response to network traffic and the logging is not given

any of these cycles. This is a shortfall in that an attack could flood the device and exploit

the system without the events being logged. The syslog is also checked to see if the

connections to the device are logged. The syslog, much like that of tcpdump, fails to log

all connections and packets to the device. There are only 165 packets captured in the

syslog and one connection to the emulated PLC recorded.

Logging was also evaluated in the banner grabbing test. The traffic comparison

between the number of packets captured on the HMI and the number of packets captured

on the emulated PLC (8 packets) are equal for the command sent from Triangle

MicroWorks. The Wireshark captures from the HMI and emulated PLC are shown in

Appendix C.3.

The verification that interactions with the emulated PLC are logged on a remote

device is also evaluated. The connection with the emulated PLC, the request command

and the connection tear down are all identified and logged. Figure 4.10 shows the

connection and command sent from Triangle MicroWorks as logged in the syslog.

Figure 4.10: Syslog entries for banner grab.

The invalid traffic logging is also evaluated to see if the emulated PLC correctly

logged all interactions. The number of packets captured on the emulated PLC correlates

with the number of packets captured on the HMI (4 packets). Appendix C.4 provides

55

screenshots of the captured traffic. The verification that any interaction with the

emulated PLC is logged on a remote logging device is checked. In this case, the failed

connection with the emulated PLC is logged and the successful completion of the SYN

with the valid TCP checksum is also shown in the logs. Figure 4.11 below shows the

connection and command sent from Triangle MicroWorks as logged in the syslog.

Figure 4.11: Syslog entry from invalid TCP checksum.

4.3.5 Qualitative Evaluation

An ICS Subject Matter Expert (SME) from the 262nd Air National Guard unit

evaluated the emulated PLC using assessment techniques. The emulated PLC responded

in a manner consistent with an operational PLC during evaluation. The individual stated

that based on the Modbus characteristics, operational parameters and interactive sessions,

the emulated PLC would have been considered an operational PLC typically encountered

during an ICS assessment. The findings indicate that an attacker attempting to exploit a

PLC target would not readily discern the differences between the emulated PLC and an

operational PLC. The ICS SME from the 262nd recommended inclusion of a web server

in the next iteration, as this is the service most used for remote access and exploitation by

malicious actors.

4.4 Analysis

 The emulated PLC successfully emulates the six Modbus TCP commands based

on the RFC as tested with Triangle MicroWorks Protocol Test Harness. The emulated

PLC also maintains system state as expected in an operational PLC. The emulated PLC

56

is responsive as an operational PLC instead of a Linux machine to three of the four

fingerprinting methods common to ICS. The MAC address of the emulated PLC is easily

configured to appear as a Siemens Automation PLC. Port scans for the PLC demonstrate

Modbus TCP server process and the OS detection is not able to successfully fingerprint

the device. The emulated PLC is able to successfully respond to banner grabbing

techniques used to fingerprint a device running a Modbus server. The emulated PLC also

successfully responds to invalid traffic in the same manner as other PLCs. Finally,

evaluation of the emulated PLC by a subject matter expert demonstrates the ability to

appear as a legitimate operational PLC to an external individual using ICS assessment

techniques.

 The emulation of the PLC is successful; however, a shortfall is identified with the

logging functionality. The logging functionality failed to properly log all traffic during

intense port scan. The logging is able to catch up before the scan is finished, however,

that could miss valuable information during an attack. The logging capability requires

further evaluation. The other services during the intense traffic load also need to be

examined to evaluate if the performance of other services is degraded during this time.

Regardless, the demonstrated ability is an improvement over current logging capabilities

at the field device level.

4.5 Results Summary

The emulated PLC successfully passes fingerprinting techniques used to classify

the device as a PLC. The emulated PLC successfully responds to Modbus TCP traffic

and maintains the proper system state. The device also responds to invalid traffic in the

57

same manner as legitimate PLCs. Although interaction with the emulated PLC was

appropriately logged, further evaluation is required to determine traffic and bandwidth

limits.

58

V. Conclusions and Recommendations

5.1 Conclusions

This research introduces a novel approach to help secure ICS. The PLC

emulation device offers many capabilities associated with employment in the operational

ICS environment. The device helps identify reconnaissance and exploitation attempts

against an operational ICS. During scanning, an attacker attempts to identify available

systems on the network. Once identified, an attacker may attempt to manipulate

parameters to alter system functionality. In each instance, the PLC emulation device

identifies the attempted actions and logs the events.

In addition to identifying attempted exploitation, the PLC emulation device offers

situational awareness. Often times, asset owners have only awareness of network traffic

and operating characteristics as reported at the HMI. The PLC emulation device

characterizes network traffic patterns and identifies erroneous communications. Indeed,

the device helps provide holistic awareness of the system and can be used as an early

detection against propagating malware that is targeting ICS. Finally, the logging

capability provides insight into attack characteristics. By deploying PLC emulation

devices across a wide range of ICS, logging can be evaluated to determine attacker tactics

and techniques.

Although the PLC emulation device offers security protections against an external

attacker and malware, it is important to note that it may not be as effective against trusted

insiders. Because insiders have explicit knowledge of ICS operations, awareness that the

PLC emulation device is employed may result in the attacker avoiding communication

with the device. Regardless, the approach demonstrates utility for increasing the security

59

posture for ICS. Indeed, use of the emulated PLC device affords a capability that is

inexpensive, configurable, portable, and offers event logging.

5.2 Future Work

5.2.1 Further Protocol Development

Currently the emulated PLC only emulates a portion of the Modbus TCP protocol.

Follow on work includes development of the additional functions in the Modbus TCP

standard to create a more robust solution. Further development also includes adding

additional ICS communication protocols such as DNP3 and EtherNet/IP to make the

device.

5.2.2 Levels of Implementation

Follow on work for the emulated PLC includes expanding the current level of

services offered by the device. Currently the device successfully emulates the protocol

level and application level for Modbus TCP. The stack level is partially emulated

through the use of iptables and configuring responses in Scapy to respond in a similar

manner to ICS devices. Future work is to fully implement the stack level of a PLC.

Scapy can be used to fully implement a response for all iterations of packets. Working

on additional application level programs such as a web server allow for enhanced PLC

emulation.

5.2.3 Response Time

Future work requires comparison of the response time for the current emulated

PLC to that of a real PLC. With the knowledge of honeypots in the IT sector, response

60

time is used to determine if an attacker is communicating with a legitimate computer or if

it is a honeypot.

5.2.4 Traffic Loss

During this research there was traffic that failed to be logged during heavy traffic

loads. Determining the reason for traffic loss and a solution to better handle the traffic

when it increases is important. Successfully capturing all packets is needed to help

determine the attack characteristics in ICS networks.

5.2.5 Ladder Logic and Firmware Implementation

The implementation of ladder logic allows enhanced emulation of a PLC. If

ladder logic is implemented, the devices the values on the device would be constantly

changing to help trick an attacker. If an attacker was scanning the network waiting to see

how the values are changing then the device could emulate the fluctuation of a pressure

sensor reading changing frequently.

Likewise is the ability to allow firmware updates to a device. While it would not

update any actual firmware, emulating the traffic to and from the emulated PLC would

make an attacker assume that he is interacting with a real PLC. Once the firmware

update has completed, the emulation will then save that state so if later the same attacker

attempted to scan for current firmware it would appear as though the firmware is the new

version.

5.2.6 Serial Implementation

Implementing an emulated device that communicates over serial lines instead of

Ethernet TCP/IP cables would be the next capture interface. Many devices still

communicate over serial lines and adding the capability enables the device to broaden the

61

array of devices that it can emulate. Much of the communication that is discussed in

current ICS systems is the communication over Ethernet because it is readily accessible.

Serial communication would have to communicate through an HMI that could be

configured as a honeypot.

5.2.7 Ethernet Header Manufacturing Tags

Ethernet header manufacturing tags are another way to commonly fingerprint an

ICS device and this needs to be evaluated as future work. This also can be implemented

with the use of Scapy easily once the knowledge of the header tags in acquired.

5.3 Concluding Remarks

 The primary goal of this research is to develop an inexpensive, configurable and

portable emulation device that contains logging capabilities. In order to properly emulate

a PLC, the emulated PLC device avoids common fingerprinting techniques specific to

ICS devices. This research develops such a device that is able to be expanded upon and

deployed to a live environment to better characterize and identify attacks on ICS

networks.

62

Appendix A: Setting Up Emulated PLC

I. BUILDING OVERO OPEN EMBEDDED IMAGE
Guide: http://gumstix.org/software-development/open-embedded/61-using-the-open-

embedded-build-system.html

1) Build a new machine with the Ubuntu 10.10 x86 ISO file to act as the

development laptop.

a. http://releases.ubuntu.com/10.10/ubuntu-10.10-desktop-i386.iso

2) Once booted, use the Update Manager to update the default packages. Do not

upgrade to Ubuntu 11.04 or other versions.

3) Open the synaptic package manager and select the following packages for install:

a. git

b. subversion

c. gcc

d. build-essential

e. help2man

f. diffstat

g. texi2html

h. texinfo

i. libncurses5-dev

j. cvs

k. gawk

l. python2.7-dev

m. python-pysqlite2

n. unzip

o. chrpath

p. ccache

4) sudo dpkg-reconfigure dash

a. Answer No when asked whether you want to install dash as /bin/sh.

5) mkdir -p ~/overo-oe

6) cd ~/overo-oe

7) git clone git://gitorious.org/gumstix-oe/mainline.git org.openembedded.dev

8) cd org.openembedded.dev

9) git checkout --track -b overo-2011.03 origin/overo-2011.03

10) cd ~/overo-oe

11) git clone git://git.openembedded.org/bitbake bitbake

12) cd bitbake

13) git checkout 1.12.0

14) cd ~/overo-oe

15) cp -r org.openembedded.dev/contrib/gumstix/build .

16) cp ~/.bashrc ~/bashrc.bak

17) cat ~/overo-oe/build/profile >> ~/.bashrc

18) Close the Terminal window and open a new one.

19) gedit ~/overo-oe/org.openembedded.dev/recipes/images/omap3-console-image.bb

http://gumstix.org/software-development/open-embedded/61-using-the-open-embedded-build-system.html
http://gumstix.org/software-development/open-embedded/61-using-the-open-embedded-build-system.html
http://releases.ubuntu.com/10.10/ubuntu-10.10-desktop-i386.iso

63

a. Add iptables to the TOOLS_INSTALL section

b. Save and close the window

20) bitbake omap3-console-image

21) The Overo file system is built at: ~/overo-

oe/tmp/deploy/glibc/images/overo/omap3-console-image-overo.tar.bz2

22) The Overo OE Linux Kernel is built at: ~/overo-

oe/tmp/deploy/glibc/images/overo/uImage-overo.bin

II. RECONFIGURING THE OVERO KERNEL TO INCLUDE IPTABLES

SUPPORT

Guide: http://gumstix.8.n6.nabble.com/iptables-on-Overo-td663707.html

1) On the development laptop:

2) cd ~/overo-oe

3) mkdir -p ./user.collection/recipes

4) cp -r ./org.openembedded.dev/recipes/linux /home/<user>/overo-

oe/user.collection/recipes

a. (bitbake looks at user.collection first. org.embedded.dev holds the

original copy)

5) cd ~/overo-oe/tmp/work/overo-angstrom-linux-gnueabi/linux-omap3<kernel

version>/git

6) make menuconfig ARCH=arm

a. Networking Support

 Networking Options

 [*] Network Packet Filtering (netfilter)

 Network Packet Filtering (netfilter)

 Core Netfilter Configuration

 ENABLE [M] all options in this menu

 IP: Netfilter Configuration

 [*] proc/sysctl compatibility with old

connection tracking

 ENABLE [M] all other menu options

 IPv6: Netfilter Configuration

 ENABLE [M] all options in this menu

b. Exit

c. Save: Yes

7) ls –al

a. Check that date was made today

8) cp ./.config ~/overo-oe/user.collection/recipes/linux/linux-omap3/overo/defconfig

9) cd ~/overo

10) bitbake –c clean linux-omap3

11) bitbake –c build linux-omap3

12) The Overo OE Linux Kernel is built at: ~/overo-

oe/tmp/deploy/glibc/images/overo/uImage-overo.bin

http://gumstix.8.n6.nabble.com/iptables-on-Overo-td663707.html

64

III. PARTITIONING BOOTABLE SD CARD FOR OVERO IMAGE

Guide: http://gumstix.org/create-a-bootable-microsd-card.html

Guide: http://gumstix.org/how-to/70-writing-images-to-flash.html

1) df

2) umount /media/…

3) umount /…

IV. DEPLOYING OVERO IMAGE

1) On the development laptop:

2) Delete the current file structure, if any, on the EXT3 partition of the micro SD

card

a. sudo nautilus

b. Edit > Preferences > Behavior > Check Include a Delete command that

bypasses Trash

c. Select rootfs

d. Select all files > Right Click > Delete

3) Copy the contents of ~/overo-oe/tmp/deploy/glibc/images/overo/omap3-console-

image-overo.tar.bz2 into the rootfs partition of the micro SD card.

4) On the micro SD card FAT partition:

a. Delete uImage

b. Copy uImage-<kernel version>-overo.bin into /

c. Rename uImage-<kernel version>-overo.bin to uImage

V. BOOTING OVERO IMAGE CONSOLE

1) Power off the Overo board.

2) Insert the newly created micro SD card into the micro SD slot of the Overo board.

3) Connect a USB cable between the “Console” mini USB B port on the Overo

board and the development laptop with ckermit installed.

4) On the development laptop create a file called overo_serial.cfg

set line /dev/ttyUSB0 (Note: 0 might changed)

set flow-control none

set carrier-watch off

set speed 115200

set reliable

fast

set prefixing all

set file type bin

set rec pack 4096

set send pack 4096

set window 5

 connect

5) Open a terminal and type:

a. kermit

http://gumstix.org/create-a-bootable-microsd-card.html
http://gumstix.org/how-to/70-writing-images-to-flash.html

65

i. take overo_serial.cfg

6) Power on the Overo board. You should see the boot sequence displayed on the

terminal.

7) Break the boot sequence when prompted then type:

a. nand erase 240000 20000

b. reset

8) Enter “root” as the username to log in.

9) To exit kermit:

a. ctrl-/-c

b. Type: exit

VI. COMPILING SCAPY FOR OVERO IMAGE
1) On the development laptop

a. Go to www.secdev.org/projects/scapy

b. Scroll down to the section labeled Download

c. Download Scapy’s latest revision

d. Unzip the folder to the desktop

e. scp –r <foldername> <IP address of gumstix>:/home/root

f. You will also want to move over the canary.py script

g. scp –r canary.py <IP address if gumstix>:/home/root

2) On the gumstix now type the following commands

a. opkg update

b. opkg install python-core

c. opkg install python-modules

d. mkdir /usr/include/python2.6

3) Go back to the development laptop

a. sudo scp /usr/include/python2.6/pyconfig.h <IP

address>:/usr/include/python2.6

4) On the gumstix

a. cd <foldername of scapy files>

b. python setup.py install

VII. COMPILING TCPDUMP FOR OVERO IMAGE
1) On the development laptop:

a. bitbake tcpdump

2) Packages will be built in: /overo-oe/tmp/deploy/glibc/ipk/armv7a

3) Copy the packages onto the Overo EXT3 partition

a. sudo scp ./tcpdump_<version number>.ipk <overo IP address>:/home/root

4) On the Overo console, install the package

a. opkg install ./tcpdump_<version number>.ipk

VIII. COMPILING BITSTRING FOR OVERO IMAGE

1) On the development laptop

a. Go to http://code.google.com/p/python-bitstring/downloads/list

b. Download bitstring latest revision

http://www.secdev.org/projects/scapy
http://code.google.com/p/python-bitstring/downloads/list

66

c. Unzip the folder to the desktop

d. scp –r <foldername> <IP address of gumstix>:/home/root

2) On the gumstix

a. cd <foldername of bitstring files>

b. python setup.py install

IX. REMOVING UNWANTED PACKAGES

1) update-rc.d –f ntpd remove

2) update-rc.d –f avahi-daemon remove

3) update-rc.d –f portmap remove

X. CONFIGURING STARTUP SCRIPT

1) Create a file in the /etc/init.d directory called canary.sh with the contents below

#!/bin/bash

/etc/init.d/networking start

ifconfig eth0 hw ether 00:0e:8c:bb:1f:56

ifconfig eth0 up

dhclient eth0

ifconfig eth1 up

ifconfig eth1 172.16.1.10

/etc/init.d/sshd start

iptables -A OUTPUT -p tcp --sport 502 -j DROP

iptables -A INPUT -p tcp --sport 502 -j ACCEPT

iptables -A INPUT -j DROP -p tcp --sport 22

iptables -A INPUT -j DROP -p tcp --sport 111

iptables -A INPUT -j LOG --log-level 6 -m pkttype --pkt-type host -i eth0

iptables -A INPUT -j REJECT --reject-with tcp-reset -i eth0

iptables -A FORWARD -j REJECT -i eth0

nohup tcpdump -s 0 -i eth0 -C 10 -w /tmp/capture.pcap &

nohup python /home/root/canary.py &

2) update-rc.d canary.sh defaults 100

X. CONFIGURING SSH TO RUN ON ETH1 ONLY

1) cd /etc/ssh

2) vi sshd_config

a. Add the lines (These lines may be commented and you just need to

uncomment them.)

67

i. Port 22

ii. AddressFamily inet

iii. ListenAddress 172.16.1.10

b. Restart ssh (/etc/init.d/sshd restart)

XI. CONFIGURING THE OVERO BOARD TO WORK WITH THE TOBI DUO

1) This is only needed if you have used the Tobi board to set up the Overo Board

2) Place the Overo Board on the Tobi Duo Expansion Board and power on the

board.

3) Once the board has come online (Detected by the blue light on the CPU stops

flashing) unplug the board and place the board back on the Tobi Expansion board.

4) Turn on the Overo

5) vi /etc/udev/rules.d/70-persistant-net.rules

6) There should now be three net device () lines in this file eth0 – eth2.

7) Edit the eth1 line so that NAME=”eth0”

8) Edit the eth2 line so that NAME=”eth1”

9) If you restart the Overo with the Tobi-Duo extension you should now be able to

SSH to 172.16.1.10.

XII. CONFIGURING THE SYSLOG SERVER

1) Edit the /etc/init.d/sysklogd file.

2) Find the line SYSLOGD=“” and replace it with SYSLOGD=”-rm 0”

3) You will also need to edit the /etc/syslog.conf file.

4) There is a line that starts with *.=info;…… -/var/log/messages

a. After *.=info; add kern.!=info;

5) After this line also add in the line kern.=info /var/log/canary.log

6) Restart the syslog service

a. /etc/init.d/syslog restart

XIII. CONFIGURING SYSLOG ON THE GUMSTIX

1) Edit the file /etc/syslog-ng.conf

2) In the destination section add in the following line.

a. Destination logging {udp(“172.16.1.11” port(514));};

3) Further down in the log section add the following line.

a. log { source(src); destination(logging); };

4) Restart the syslog service

a. /etc/init.d/syslog restart

68

Appendix B: Canary.py code

#! /usr/bin/python

Dustin Berman

AFIT/ENG

Masters of Cyber Operations, June 2012

File Information

canary.py

Emulates a PLC with the following commands: Read Coil, Read Discrete Inputs, Read Holding

Registers, Read Input Registers, Write Single Coil, Write Single Register

This will also log any connections to the syslog

Imports

import logging, platform, random

import syslog

from struct import *

from bitstring import BitArray

Designed with Scapy 2.2.0

logging.getLogger("scapy").setLevel(1)

from scapy.all import *

Display the version of Python and Scapy being used

print "Python %s\tScapy %s" % (platform.python_version(), conf.version)

#Global Variables

numcoils = 100

numdinputs = 100

numinputregisters = 100

numholdregisters = 100

coil = ['0']*numcoils

dinputs = ['0']*numdinputs

inputregister = ['\x00\x00']*numinputregisters

holdregister = ['\x00\x00']*numholdregisters

vendorname = "Allen Bradley"

productcode = "Micrologix 1500"

majorminorrevision = "V1.12.1"

ipid = random.randint(1,65535)

Dictionaries

Need to add in all function codes here

function_code_enum = {1:"Read Coil", 2:"Read Discrete Inputs", 3:"Read Holding Registers", 4:"Read

Input Registers", 5:"Write Single Coil", 6:"Write Single Register", 43:"Encapsulated Interface Transport"}

function_code = {"Read Coil":1, "Read Discrete Inputs":2, "Read Holding Registers":3, "Read Input

Registers":4, "Write Single Coil":5, "Write Single Register":6, "Encapsulated Interface Transport":43}

Modbus Header

class Modbus(Packet):

 name = "Modbus"

 fields_desc = [ShortField("transaction", 0),

 ShortField("protocol", 0),

 ShortField("length", 0),

69

 ByteField("unit", 0),

 ByteEnumField("function", 1, function_code_enum)

]

 # This will determine how to dissect the rest of the packet

 def guess_payload_class(self, payload):

 if self.function == function_code['Read Coil']:

 return ReadCoil

 elif self.function == function_code['Read Discrete Inputs']:

 return ReadDiscreteInputs

 elif self.function == function_code['Read Holding Registers']:

 return ReadHoldingRegisters

 elif self.function == function_code['Read Input Registers']:

 return ReadInputRegisters

 elif self.function == function_code['Write Single Coil']:

 return WriteSingleCoil

 elif self.function == function_code['Write Single Register']:

 return WriteSingleRegister

 elif self.function == function_code['Encapsulated Interface Transport']:

 return EncapsulatedInterfaceRequest

 else:

 return Packet.guess_payload_class(self,payload)

Read Coil Payload

class ReadCoil(Packet):

 name= "ReadCoil"

 fields_desc = [ShortField("startcoil", 0),

 ShortField("quantitycoils", 0)

]

Read Coil Response Payload

class ReadCoilResponse(Packet):

 name= "ReadCoilResponse"

 fields_desc = [ByteField("bytecount", 0),

 StrField("status", "")

]

Read Discrete Inputs Payload

class ReadDiscreteInputs(Packet):

 name= "ReadDiscreteInputs"

 fields_desc = [ShortField("startinput", 0),

 ShortField("quantityinputs", 0)

]

Read Discrete Inputs Response Payloads

class ReadDiscreteInputsResponse(Packet):

 name= "ReadDiscreteInputsResponse"

 fields_desc = [ByteField("bytecount", 0),

 StrField("status", "")

]

Read Holding Registers Payload

class ReadHoldingRegisters(Packet):

 name= "ReadHoldingRegisters"

70

 fields_desc = [ShortField("startaddress", 0),

 ShortField("quantityregs", 0)

]

Read Holding Registers Response Payload

class ReadHoldingRegistersResponse(Packet):

 name= "ReadHoldingRegistersResponse"

 fields_desc = [ByteField("bytecount", 0),

 StrField("status", "")

]

Read Input Registers Payload

class ReadInputRegisters(Packet):

 name= "ReadInputRegisters"

 fields_desc = [ShortField("startaddress", 0),

 ShortField("quantityregs", 0)

]

Read Input Registers Response Payload

class ReadInputRegistersResponse(Packet):

 name= "ReadHoldingRegistersResponse"

 fields_desc = [ByteField("bytecount", 0),

 StrField("status", "")

]

Write Single Coil Payload

class WriteSingleCoil(Packet):

 name = "WriteSingleCoil"

 fields_desc = [ShortField("coilnumber", 0),

 ByteField("state", 0),

 ByteField("padding", 0)

]

Write Single Register Payload

class WriteSingleRegister(Packet):

 name= "WriteSingleRegister"

 fields_desc = [ShortField("regaddress", 0),

 ShortField("regvalue", 0)

]

Encapsulated Interface Transport Request Payload

class EncapsulatedInterfaceRequest(Packet):

 name= "EncapsulatedInterfaceRequest"

 fields_desc = [ByteField("meitype", 0),

 ByteField("deviceid", 1),

 ByteField("objectid", 0)

]

Encapsulated Interface Transport Response Payload

class EncapsulatedInterfaceResponse(Packet):

 name= "EncapsulatedInterfaceResponse"

 fields_desc = [ByteField("meitype", 0),

 ByteField("deviceid", 1),

 ByteField("conformity", 1),

71

 ByteField("morefollows", 0),

 ByteField("objectid", 0),

 ByteField("numobjects",0)

]

Encapsulated Interface Transport Object Payload

class EncapsulatedInterfaceObject(Packet):

 name= "EncapsulatedInterfaceObject"

 fields_desc = [ByteField("objectid", 0),

 ByteField("objectlength", 0),

 StrField("objectvalue","")

]

Error Payload

class Error(Packet):

 name= "Error"

 fields_desc = [ByteField("code", 1)

]

Bind Layers

bind_layers(TCP, Modbus, sport = 502)

bind_layers(TCP, Modbus, dport = 502)

Responding to a SYN request

def responsesyn(packet):

 global ipid

 #Write the connection to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' is connecting to the Honeypot Device')

 #Build a packet to send back

 response = Ether()/IP()/TCP()

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

 response[IP].src = packet[IP].dst

 response[IP].dst = packet[IP].src

 ipid = random.randint(1,65535)

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].flags = 2

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = random.randint(1,4294967295)

 response[TCP].ack = packet[TCP].seq + 1

 response[TCP].flags = 'SA'

 if packet[TCP].window == 1 or packet[TCP].window == 63 or packet[TCP].window == 4 or

packet[TCP].window == 16:

 response[TCP].options = [('MSS', 1460), ('NOP', None), ('WScale', 0), ('NOP', None),

('NOP', None), ('Timestamp', (0, 4294967295))]

 elif packet[TCP].window == 512:

 response[TCP].options = [('MSS', 1460),('NOP', None), ('NOP', None), ('Timestamp', (0,

4294967295))]

 else:

 response[TCP].options = packet[TCP].options

 del(response[IP].chksum)

72

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

Responding to a SYN request

def responserstack(packet):

 global ipid

 #Write the connection to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' is closing the connection to the Honeypot

Device')

 #Build a packet to send back

 response = Ether()/IP()/TCP()

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

 response[IP].src = packet[IP].dst

 response[IP].dst = packet[IP].src

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].flags = 2

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = packet[TCP].ack

 response[TCP].ack = packet[TCP].seq + 1

 response[TCP].flags = 'RA'

 response[TCP].options = packet[TCP].options

 del(response[IP].chksum)

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

Building a response to Read Coil

def responsereadcoil(packet):

 global ipid

 # Build a packet to send back

 response = Ether()/IP()/TCP()

 if packet.haslayer(ReadCoil):

 # This checks to see if the request was valid in the number of coils it requested.

 if packet[ReadCoil].quantitycoils > numcoils or packet[ReadCoil].quantitycoils < 1:

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read

Coil request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 3

73

 # This checks to see if the starting address is valid and the starting address + Quatity of

Outputs is valid

 elif (packet[ReadCoil].startcoil < 0 or packet[ReadCoil].startcoil > numcoils) or

((packet[ReadCoil].startcoil + packet[ReadCoil].quantitycoils) > numcoils):

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read

Coil request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 2

 # Else the Read Coil was a valid command

 else:

 response = response/Modbus()/ReadCoilResponse()

 # Write the valid request to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Read Coil

request')

 bytecount = (packet[ReadCoil].quantitycoils/8)

 partbytecount = packet[ReadCoil].quantitycoils%8

 if partbytecount != 0:

 bytecount = bytecount + 1

 response[ReadCoilResponse].bytecount = bytecount

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = response[ReadCoilResponse].bytecount + 3

 leadzero = (8 - partbytecount)%8

 status = []

 output = ''

 # This is + 7 because each high order bit is the highest output address.

 # (Look at Modbus Application Protocol Specification V1.1b at www.Modbus-

IDA.org)

 current = packet[ReadCoil].startcoil + 7

 # This will build each byte to be sent back to the master.

 for x in range(0, bytecount):

 if x == (bytecount-1):

 for z in range(current,current-leadzero, -1):

 status.append('0')

 for k in range(current-leadzero, current-8, -1):

 status.append(coil[k])

 current = current + 8

 status = ''.join(status)

 # Below will take the bits and create a byte to be added to the

output string.

 temp = BitArray(bin=status)

 value = temp.uint

 string = pack('!h', value)

 output = output + string[1]

74

 status = []

 else:

 for y in range(current, current-8, -1):

 status.append(coil[y])

 current = current + 8

 status = ''.join(status)

 # Below will take the bits and create a byte to be added to the

output string.

 temp = BitArray(bin=status)

 value = temp.uint

 string = pack('!h', value)

 output = output + string[1]

 status = []

 response[ReadCoilResponse].status = output

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

 response[IP].flags = 0

 response[IP].ttl = 64

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].src = packet[IP].dst

 response[IP].dst = packet[IP].src

 response[TCP].flags = 'PA'

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = packet[TCP].ack

 response[TCP].ack = packet[TCP].seq + 12

 response[TCP].window = 4096

 del(response[IP].chksum)

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

 else:

 responseerror(packet)

Building a response to Read Discrete Inputs

def responsereaddiscreteinputs(packet):

 global ipid

 # Build a packet to send back

 response = Ether()/IP()/TCP()

 if packet.haslayer(ReadDiscreteInputs):

 # This checks to see if the request was valid in the number of inputs it requested.

 if packet[ReadDiscreteInputs].quantityinputs > numdinputs or

packet[ReadDiscreteInputs].quantityinputs < 1:

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read

Discrete Input request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

75

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 3

 # This checks to see if the starting address is valid and the starting address + Quatity of

Outputs is valid

 elif (packet[ReadDiscreteInputs].startinput < 0 or packet[ReadDiscreteInputs].startinput

>= numdinputs) or ((packet[ReadDiscreteInputs].startinput + packet[ReadDiscreteInputs].quantityinputs)

>= numdinputs):

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read

Discrete Input request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 2

 # Else the Read Discrete Inputs was a valid command

 else:

 response = response/Modbus()/ReadDiscreteInputsResponse()

 # Write the valid request to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Read Discrete

Input request')

 bytecount = (packet[ReadDiscreteInputs].quantityinputs/8)

 partbytecount = packet[ReadDiscreteInputs].quantityinputs%8

 if partbytecount != 0:

 bytecount = bytecount + 1

 response[ReadDiscreteInputsResponse].bytecount = bytecount

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].function = packet[Modbus].function

 response[Modbus].length = response[ReadDiscreteInputsResponse].bytecount +

3

 leadzero = (8 - partbytecount)%8

 status = []

 output = ''

 # This is + 7 because each high order bit is the highest output address.

 # (Look at Modbus Application Protocol Specification V1.1b at www.Modbus-

IDA.org)

 current = packet[ReadDiscreteInputs].startinput + 7

 # This will build each byte to be sent back to the master.

 for x in range(0, bytecount):

 if x == (bytecount-1):

 for z in range(current,current-leadzero, -1):

 status.append('0')

 for k in range(current-leadzero, current-8, -1):

 status.append(dinputs[k])

76

 current = current + 8

 # Below will take the bits and create a byte to be added to the

output string.

 status = ''.join(status)

 temp = BitArray(bin=status)

 value = temp.uint

 string = pack('!h', value)

 output = output + string[1]

 status = []

 else:

 for y in range(current, current-8, -1):

 status.append(dinputs[y])

 current = current + 8

 # Below will take the bits and create a byte to be added to the

output string.

 status = ''.join(status)

 temp = BitArray(bin=status)

 value = temp.uint

 string = pack('!h', value)

 output = output + string[1]

 status = []

 response[ReadDiscreteInputsResponse].status = output

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

 response[IP].flags = 0

 response[IP].ttl = 64

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].src = packet[IP].dst

 response[IP].dst = packet[IP].src

 response[TCP].flags = 'PA'

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = packet[TCP].ack

 response[TCP].ack = packet[TCP].seq + 12

 response[TCP].window = 4096

 del(response[IP].chksum)

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

 else:

 responseerror(packet)

Building a response to Read Holding Registers

def responsereadregisters(packet):

 global ipid

 # Build a packet to send back

 response = Ether()/IP()/TCP()

 if packet.haslayer(ReadHoldingRegisters):

77

 # This checks to see if the request was valid in the number of registers it requested.

 if packet[ReadHoldingRegisters].quantityregs < 1 or

packet[ReadHoldingRegisters].quantityregs > numholdregisters:

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read

Holding Registers request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 3

 # This checks to see if the starting address is valid and the starting address + Quatity of

Outputs is valid

 elif (packet[ReadHoldingRegisters].startaddress < 0 or

packet[ReadHoldingRegisters].startaddress >= numholdregisters) or

((packet[ReadHoldingRegisters].startaddress + packet[ReadHoldingRegisters].quantityregs) >=

numholdregisters):

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read

Holding Registers request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 2

 # Else the Read Holding Register Request is valid

 else:

 response = response/Modbus()/ReadHoldingRegistersResponse()

 # Write the valid request to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Read Holding

Registers request')

 response[ReadHoldingRegistersResponse].bytecount =

packet[ReadHoldingRegisters].quantityregs * 2

 response[Modbus].length =

response[ReadHoldingRegistersResponse].bytecount + 3

 response[Modbus].function = packet[Modbus].function

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].transaction = packet[Modbus].transaction

 # This will loop and add all the values requested to the status.

 for x in range(packet[ReadHoldingRegisters].startaddress,

(packet[ReadHoldingRegisters].startaddress + packet[ReadHoldingRegisters].quantityregs)):

 response[ReadHoldingRegistersResponse].status =

response[ReadHoldingRegistersResponse].status + holdregister[x]

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

78

 response[IP].flags = 0

 response[IP].ttl = 64

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].src = packet[IP].dst

 response[IP].dst = packet[IP].src

 response[TCP].flags = 'PA'

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = packet[TCP].ack

 response[TCP].ack = packet[TCP].seq + 12

 response[TCP].window = 4096

 del(response[IP].chksum)

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

 else:

 responseerror(packet)

Building a response to Read Input Registers

def responsereadinputregisters(packet):

 global ipid

 # Build a packet to send back

 response = Ether()/IP()/TCP()

 if packet.haslayer(ReadInputRegisters):

 # This checks to see if the request was valid in the number of registers it requested.

 if packet[ReadInputRegisters].quantityregs < 1 or

packet[ReadInputRegisters].quantityregs > numinputregisters:

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read

Input Registers request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 3

 # This checks to see if the starting address is valid and the starting address + Quatity of

Outputs is valid

 elif (packet[ReadInputRegisters].startaddress < 0 or

packet[ReadInputRegisters].startaddress >= numinputregisters) or

((packet[ReadInputRegisters].startaddress + packet[ReadInputRegisters].quantityregs) >=

numinputregisters):

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read

Input Registers request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

79

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 2

 # Else the Read Input Registers is valid

 else:

 response = response/Modbus()/ReadInputRegistersResponse()

 # Write the valid request to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Read Input

Registers request')

 response[ReadInputRegistersResponse].bytecount =

packet[ReadInputRegisters].quantityregs * 2

 response[Modbus].length = response[ReadInputRegistersResponse].bytecount +

3

 response[Modbus].function = packet[Modbus].function

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].transaction = packet[Modbus].transaction

 # This will loop and add all the values requested to the status.

 for x in range(packet[ReadInputRegisters].startaddress,

(packet[ReadInputRegisters].startaddress + packet[ReadInputRegisters].quantityregs)):

 response[ReadInputRegistersResponse].status =

response[ReadInputRegistersResponse].status + inputregister[x]

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

 response[IP].flags = 0

 response[IP].ttl = 64

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].src = packet[IP].dst

 response[IP].dst = packet[IP].src

 response[TCP].flags = 'PA'

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = packet[TCP].ack

 response[TCP].ack = packet[TCP].seq + 12

 response[TCP].window = 4096

 del(response[IP].chksum)

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

 else:

 responseerror(packet)

Building a response to Write Single Coil

def responsewritecoil(packet):

 global ipid

 # Build a packet to send back

 response = Ether()/IP()/TCP()

80

 if packet.haslayer(WriteSingleCoil):

 # This checks to see if the request value was valid.

 if not (packet[WriteSingleCoil].state == 0 or packet[WriteSingleCoil].state == 255):

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Write

Single Coil request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 3

 # This checks to see if the coil number is valid

 elif packet[WriteSingleCoil].coilnumber < 0 or packet[WriteSingleCoil].coilnumber >=

numcoils:

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Write

Single Coil request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 2

 # Else the Write Single Coil request is valid

 else:

 response = response/Modbus()/WriteSingleCoil()

 # Write the valid request to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Write Single

Coil request')

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = packet[Modbus].length

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function

 response[WriteSingleCoil].state = packet[WriteSingleCoil].state

 response[WriteSingleCoil].coilnumber = packet[WriteSingleCoil].coilnumber

 # If the value is 255 switch the value to 1 else if it is 0 switch the value to 0.

 if packet[WriteSingleCoil].state == 255:

 coil[packet[WriteSingleCoil].coilnumber] = '1'

 elif packet[WriteSingleCoil].state == 0:

 coil[packet[WriteSingleCoil].coilnumber] = '0'

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

 response[IP].flags = 0

 response[IP].ttl = 64

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].src = packet[IP].dst

81

 response[IP].dst = packet[IP].src

 response[TCP].flags = 'PA'

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = packet[TCP].ack

 response[TCP].ack = packet[TCP].seq + 12

 response[TCP].window = 4096

 del(response[IP].chksum)

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

 else:

 responseerror(packet)

Building a response to Write Single Register

def responsewriteregister(packet):

 global ipid

 # Build a packet to send back

 response = Ether()/IP()/TCP()

 if packet.haslayer(WriteSingleRegister):

 # This checks to see if the request value was valid.

 if packet[WriteSingleRegister].regvalue < 0 or packet[WriteSingleRegister].regvalue >

65535:

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Write

Single Register request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 3

 # This checks to see if the register address is valid.

 elif packet[WriteSingleRegister].regaddress < 0 or

packet[WriteSingleRegister].regaddress >= numholdregisters:

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Write

Single Register request')

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 2

 # Else the Write Single Register request is valid

 else:

 response = response/Modbus()/WriteSingleRegister()

82

 # Write the valid request to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Write Single

Register request')

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = packet[Modbus].length

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function

 response[WriteSingleRegister].regaddress =

packet[WriteSingleRegister].regaddress

 response[WriteSingleRegister].regvalue = packet[WriteSingleRegister].regvalue

 # This updates the value of the register to be changed.

 holdregister[packet[WriteSingleRegister].regaddress] = pack('!h',

packet[WriteSingleRegister].regvalue)

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

 response[IP].flags = 0

 response[IP].ttl = 64

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].src = packet[IP].dst

 response[IP].dst = packet[IP].src

 response[TCP].flags = 'PA'

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = packet[TCP].ack

 response[TCP].ack = packet[TCP].seq + 12

 response[TCP].window = 4096

 del(response[IP].chksum)

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

 else:

 responseerror(packet)

def responseencapsulatedinterface(packet):

 global ipid

 # Build a packet to send back

 response = Ether()/IP()/TCP()

 if packet.haslayer(EncapsulatedInterfaceRequest):

 # This checks to see if the request was valid MEI type

 if packet[EncapsulatedInterfaceRequest].meitype == 14:

 # Basic Device Identification Stream

 if packet[EncapsulatedInterfaceRequest].deviceid == 1:

 # This must start with a 0

 if packet[EncapsulatedInterfaceRequest].objectid == 0:

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a

VALID Encapsulated Interface Read Basic Information Request')

 response =

response/Modbus()/EncapsulatedInterfaceResponse()

83

 response[EncapsulatedInterfaceResponse].meitype =

packet[EncapsulatedInterfaceRequest].meitype

 response[EncapsulatedInterfaceResponse].deviceid =

packet[EncapsulatedInterfaceRequest].deviceid

 response[EncapsulatedInterfaceResponse].conformity = 1

 response[EncapsulatedInterfaceResponse].morefollows = 0

 response[EncapsulatedInterfaceResponse].objectid = 0

 response[EncapsulatedInterfaceResponse].numobjects = 3

 length = len(response[EncapsulatedInterfaceResponse])

 #Building the objects to send in the packet

 object1 = EncapsulatedInterfaceObject()

 object1[EncapsulatedInterfaceObject].objectid = 0

 object1[EncapsulatedInterfaceObject].objectvalue =

vendorname

 object1[EncapsulatedInterfaceObject].objectlength =

len(object1[EncapsulatedInterfaceObject].objectvalue)

 object2 = EncapsulatedInterfaceObject()

 object2[EncapsulatedInterfaceObject].objectid = 1

 object2[EncapsulatedInterfaceObject].objectvalue =

productcode

 object2[EncapsulatedInterfaceObject].objectlength =

len(object2[EncapsulatedInterfaceObject].objectvalue)

 object3 = EncapsulatedInterfaceObject()

 object3[EncapsulatedInterfaceObject].objectid = 2

 object3[EncapsulatedInterfaceObject].objectvalue =

majorminorrevision

 object3[EncapsulatedInterfaceObject].objectlength =

len(object3[EncapsulatedInterfaceObject].objectvalue)

 response = response/object1/object2/object3

 length = length + len(object1) + len(object2) + len(object3) +

2

 response[Modbus].length = length

 else:

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an

INVALID Object ID code ' + str(packet[EncapsulatedInterfaceRequest].objectid))

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 2

 # One Specific Identification Object

 elif packet[EncapsulatedInterfaceRequest].deviceid == 4:

 if packet[EncapsulatedInterfaceRequest].objectid >= 0 and

packet[EncapsulatedInterfaceRequest].objectid < 3:

 response =

response/Modbus()/EncapsulatedInterfaceResponse()/EncapsulatedInterfaceObject()

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a

VALID Encapsulated Interface Read Single Device Object Request')

 response[EncapsulatedInterfaceResponse].meitype =

packet[EncapsulatedInterfaceRequest].meitype

84

 response[EncapsulatedInterfaceResponse].deviceid =

packet[EncapsulatedInterfaceRequest].deviceid

 response[EncapsulatedInterfaceResponse].conformity = 129

 response[EncapsulatedInterfaceResponse].morefollows = 0

 response[EncapsulatedInterfaceResponse].objectid = 0

 response[EncapsulatedInterfaceResponse].numobjects = 1

 response[EncapsulatedInterfaceObject].objectid =

packet[EncapsulatedInterfaceRequest].objectid

 if packet[EncapsulatedInterfaceRequest].objectid == 0:

 response[EncapsulatedInterfaceObject].objectvalue =

vendorname

 elif packet[EncapsulatedInterfaceRequest].objectid == 1:

 response[EncapsulatedInterfaceObject].objectvalue =

productcode

 elif packet[EncapsulatedInterfaceRequest].objectid == 2:

 response[EncapsulatedInterfaceObject].objectvalue =

majorminorrevision

 response[EncapsulatedInterfaceObject].objectlength =

len(response[EncapsulatedInterfaceObject].objectvalue)

 response[Modbus].length =

len(response[EncapsulatedInterfaceResponse]) + len(response[EncapsulatedInterfaceObject])

 response[EncapsulatedInterfaceObject].objectid =

packet[EncapsulatedInterfaceRequest].objectid

 else:

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an

INVALID Object ID code ' + str(packet[EncapsulatedInterfaceRequest].objectid))

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 2

 # The Read Device Code is not supported so respond with an error

 else:

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an

INVALID Read Device ID code ' + str(packet[EncapsulatedInterfaceRequest].deviceid))

 response = response/Modbus()/Error()

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function + 128

 response[Error].code = 3

 # The MEI Type is not supported

 else:

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID MEI

Type ' + str(packet[EncapsulatedInterfaceRequest].meitype))

 responseerror(packet)

 response[Modbus].transaction = packet[Modbus].transaction

85

 response[Modbus].unit = packet[Modbus].unit

 response[Modbus].function = packet[Modbus].function

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

 response[IP].flags = 0

 response[IP].ttl = 64

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].src = packet[IP].dst

 response[IP].dst = packet[IP].src

 response[TCP].flags = 'PA'

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = packet[TCP].ack

 response[TCP].ack = packet[TCP].seq + len(packet[TCP].payload)

 response[TCP].window = 4096

 del(response[IP].chksum)

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

 else:

 responseerror(packet)

def responseerror(packet):

 global ipid

 # Build a packet to send back

 response = Ether()/IP()/TCP()/Modbus()/Error()

 # Write the error to the syslog

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID function code ' +

str(packet[Modbus].function))

 response[Ether].src = packet[Ether].dst

 response[Ether].dst = packet[Ether].src

 response[IP].flags = 0

 response[IP].ttl = 64

 response[IP].id = ipid

 ipid = ipid + 1

 response[IP].src = packet[IP].dst

 response[IP].dst = packet[IP].src

 response[TCP].flags = 'PA'

 response[TCP].sport = packet[TCP].dport

 response[TCP].dport = packet[TCP].sport

 response[TCP].seq = packet[TCP].ack

 response[TCP].ack = packet[TCP].seq + len(packet[TCP].payload)

 response[TCP].window = 4096

 response[Modbus].transaction = packet[Modbus].transaction

 response[Modbus].length = 3

 response[Modbus].unit = packet[Modbus].unit

 # This will change the high order bit to one unless it is already a 1.

 if packet[Modbus].function > 127:

86

 response[Modbus].function = packet[Modbus].function

 else:

 response[Modbus].function = packet[Modbus].function + 128

 del(response[IP].chksum)

 del(response[TCP].chksum)

 del(response[IP].len)

 #sendp will recalculate the checksums and IP length before sending the packet.

 sendp(response, loop=0)

def response(packet):

 if packet.haslayer(TCP):

 if packet[TCP].dport == 502:

 originalChecksum=packet[TCP].chksum

 originalIPChecksum=packet[IP].chksum

 del packet[IP].chksum

 del packet[TCP].chksum

 packet=Ether(str(packet))

 recomputedIPChecksum=packet[IP].chksum

 recomputedChecksum=packet[TCP].chksum

 if originalChecksum == recomputedChecksum and originalIPChecksum ==

recomputedIPChecksum:

 if packet.haslayer(Modbus) and packet[Modbus].protocol == 0:

 if packet[Modbus].function == function_code['Read Coil']:

 responsereadcoil(packet)

 elif packet[Modbus].function == function_code['Read

Discrete Inputs']:

 responsereaddiscreteinputs(packet)

 elif packet[Modbus].function == function_code['Read Holding

Registers']:

 responsereadregisters(packet)

 elif packet[Modbus].function == function_code['Read Input

Registers']:

 responsereadinputregisters(packet)

 elif packet[Modbus].function == function_code['Write Single

Coil']:

 responsewritecoil(packet)

 elif packet[Modbus].function == function_code['Write Single

Register']:

 responsewriteregister(packet)

 elif packet[Modbus].function == function_code['Encapsulated

Interface Transport']:

 responseencapsulatedinterface(packet)

 else:

 responseerror(packet)

 elif packet[TCP].flags == 2:

 #send a SYN ACK response

 responsesyn(packet)

 elif packet[TCP].flags == 17:

 #Closing down the connection to a FIN ACK

 responserstack(packet)

 elif not originalChecksum == recomputedChecksum:

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an

INVALID TCP checksum')

87

 else:

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an

INVALID IP checksum')

 return

This is the Main Script

sniff(iface="eth0", store = 0, prn=lambda x: response(x))

88

Appendix C: Emulated PLC Test Case Supporting Figures

C.1 Functionality Test Through Modbus Traffic Emulation

F
ig

u
re

 C
.1

:
T

ra
ff

ic
 c

ap
tu

re
d
 o

n
 H

M
I

ru
n

n
in

g
 T

ri
an

g
le

 M
ic

ro
W

o
rk

s

89

F
ig

u
re

 C
.2

:
T

ra
ff

ic
 c

ap
tu

re
d
 o

n
 e

m
u

la
te

d
 P

L
C

 r
u

n
n

in
g

 T
ri

an
g

le
 M

ic
ro

W
o

rk
s

90

F
ig

u
re

 C
.3

:
T

ra
ff

ic
 c

ap
tu

re
d
 o

n
 H

M
I

ru
n

n
in

g
 M

o
d

b
u

s
P

o
ll

91

F
ig

u
re

 C
.4

:
T

ra
ff

ic
 c

ap
tu

re
d
 o

n
 e

m
u

la
te

d
 P

L
C

 r
u

n
n

in
g

 M
o

d
b

u
s

P
o

ll

92

F
ig

u
re

 C
.5

:
T

ra
ff

ic
 c

ap
tu

re
d
 o

n
 H

M
I

d
u
ri

n
g

 r
ea

d
,

w
ri

te
,

re
ad

 t
es

t.

93

F

ig
u

re
 C

.6
:

T
ra

ff
ic

 c
ap

tu
re

d
 o

n
 e

m
u

la
te

d
 P

L
C

 d
u

ri
n

g
 r

ea
d

,
w

ri
te

,
re

ad
 t

es
t.

94

C.2 Fingerprinting Port Scan Test Case

Figure C.7: Nmap Intense Scan All TCP Ports, Emulated PLC

95

Figure C.8: Nmap Intense Scan All TCP Ports, CompactLogix 1769

96

Figure C.9: Nmap Intense Scan All TCP Ports, MicroLogix 1100

97

Figure C.10: Nmap Operating System Scan on Ethernet/IP port ControlLogix 1769

98

Figure C.11: Nmap Operating System Scan on Ethernet/IP port MicroLogix 1100

99

C.3 Fingerprinting Banner Grab Test Case

F
ig

u
re

 C
.1

2
:

T
ra

ff
ic

 c
ap

tu
re

d
 o

n
 H

M
I

fr
o

m
 b

an
n

er
 g

ra
b
b

in
g
 t

es
t.

100

F
ig

u
re

 C
.1

3
:

T
ra

ff
ic

 c
ap

tu
re

d
 o

n
 e

m
u

la
te

d
 P

L
C

 f
ro

m
 b

an
n

er
 g

ra
b

b
in

g
 t

es
t.

101

C.4 Invalid Traffic Test Case

F
ig

u
re

 C
.1

4
:

N
et

w
o

rk
 c

ap
tu

re
 o

f
in

v
al

id
 c

h
ec

k
su

m
 s

en
t

to
 M

ic
ro

L
o

g
ix

 1
1
0

0

102

F
ig

u
re

 C
.1

5
:

N
et

w
o

rk
 c

ap
tu

re
 o

f
in

v
al

id
 c

h
ec

k
su

m
 s

en
t

to
 C

o
n

tr
o

lL
o
g

ix
 1

7
6

9

103

F
ig

u
re

 C
.1

6
:

N
et

w
o

rk
 c

ap
tu

re
 o

f
in

v
al

id
 c

h
ec

k
su

m
 s

en
t

to
 e

m
u

la
te

d
 P

L
C

104

Appendix D: List of Acronyms

CIKR Critical Infrastructure and Key Resources

CIP Critical Infrastructure Protection

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DHS Department of Homeland Security

DMZ Demilitarized Zone

EIT Encapsulated Interface Transport

FIFO First-In-First-Out

GUI Graphical User Interface

HMI Human Machine Interface

HSPD Homeland Security Presidential Directive

IANA Internet Assigned Numbers Authority

ICS Industrial Control System

IDS Intrusion Detection System

IT Information Technology

MBAP Modbus Application Protocol

MEI Modbus Encapsulated Interface Transport

MTU Master Terminal Unit

OS Operating System

PDU Protocol Data Unit

105

PLC Programmable Logic Controller

RFC Request For Comment

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

SSA Sector Specific Agencies

106

Bibliography

[1] Balitanas, Maricel, Rosslin John Robles, Ronnie Caytiles, Yvette Gelogo, Tai-hoon

Kim. “Protecting IP-based SCADA System with Crossed-Cipher Scheme.” 2011

International Conference on Ubiquitous Computing and Multimedia Applications.

pp. 123 – 126, 2011.

[2] Boyer, S., SCADA: Supervisory Control and Data Acquisition, The Instrumentation,

Systems, and Automation Society, Research Triangle Park, North Carolina, 2004.

[3] Chavez, A., Cassidy, R. F., Trent, J. and Urrea, J. (2008) "Remote Forensic Analysis

of Process Control Systems". Critical Infrastructure Protection, Vol 253, pp. 223-

235.

[4] Department of Energy. 21 Steps to Improve Cyber Security of SCADA Networks.

[5] Department of Homeland Security, National Infrastructure Protection Plan, 2009

[6] Department of Homeland Security. Recommended Practice: Improving Industrial

Control Systems Cybersecurity with Defense-In-Depth Strategies. October 2009

[7] Digital Bond. (2011). “Quickdraw SCADA IDS”.

http://www.digitalbond.com/tools/quickdraw/

[8] Digital Bond. (2011). “Scada honeynet”. http://www.digitalbond.com/tools/scada-

honeynet/

[9] Digital Bond (2012). “Field Device Fingerprinting”.

http://www.digitalbond.com/scadapedia/security-controls/field-device-

fingerprinting/

[10] Falliere, Nicolas, Liam O Murchu, and Eric Chien. “W32.Stuxnet Dossier”.

Symantec, version 1.4 edition, February 2011

[11] GAO. Cybersecurity: Continued Attention Needed to Protect Our Nation’s Critical

Infrastructure. GAO-11-865T, 2011.

[12] Gumstix (www.gumstix.com), 2012.

[13] Homeland Security Presidential Directive 7 (HSPD 7) — Critical Infrastructure

Identification, Prioritization, and Protection (HSPD-7) (Dec. 17, 2003)

[14] The Honeynet Project. (2003). “Know your enemy: Sebek”.

http://old.honeynet.org/papers/sebek.pdf

107

[15] The Honeynet Project. (2004). Know your enemy: Learning about security threats.

(2nd ed.). Addison-Wesley.

[16] The Honeynet Project. (2006). “Know your enemy: Honeynets”.

http://old.honeynet.org/papers/honeynet/

[17] Idaho National Laboratory, Control systems cyber security: Defense in depth

strategies, External Report INL/EXT-06-11478, Idaho Falls, Idaho, May 2006.

[18] Igure, Vinay, Sean Laughter, Ronald Williams, “Security Issues in SCADA

networks”. Computers & Security, v 25, pp 498-506, num 7, 2006.

[19] Krutz, R. L. (2006). Securing SCADA systems. Indianapolis, IN: Wiley Pub.

[20] Langevin, R., R. McCaul, et al. (2008). Securing Cyberspace for the 44
th

 Presidency.

[21] Leverett, E.P. “Quantitatively Assessing and Visualising Industrial System Attack

Surfaces". 2011.

[22] Matrosov, A., E. Rodionov, D. Harley and J. Malcho, Stuxnet under the microscope

revision 1.31, ESET North America, 2010.

[23] Metcalf, William, Victor Julien. “Snort_Inline” http://snort-

inline.sourceforge.net/oldhome.html

[24] Modbus IDA, “Modbus Application Protocol Specification v1.1a”, North Grafton,

Massachusetts (www.modbus.org/specs.php), 2004.

[25] Modbus IDA, “Modbus Messaging on TCP/IP Implementation Guide v1.0a”, North

Grafton, Massachusetts (www.modbus.org/specs.php), 2004.

[26] Modbus.org, “Modbus over Serial Line Specification and Implementation Guide

v1.0”, North Grafton, Massachusetts (www.modbus.org/specs.php), 2002.

[27] Morris, Thomas and Kalyan Pavurapu. A retrofit network transaction data logger

and intrusion detection system for transmission and distribution substations. In

Power and Energy (PECon), 2010 IEEE International Conference on, pages 958–

963, 2010.

[28] Moteff, John and Paul Parfomak (2004). Critical infrastructure and key assets:

definition and identification.

[29] Niland, M. Computer virus brings down train signals, InformationWeek, August,

2003.

108

[30] Northeast blackout of 2003. March 2, 2012. n. pag.

http://en.wikipedia.org/wiki/Northeast_blackout_of_2003

[31] Pal, Om, Sharda Saiwan, Peeyush Jain, Zia Saquib, and Dhiren Patel. Cryptographic

key management for SCADA system: An architectural framework. In Advances

in Computing, Control, & Telecommunication Technologies, 2009. ACT ’09.

International Conference on, pages 169–174, 2009.

[32] Pothamsetty, V., & Franz, M. (2005). “Scada honeynet project: Building honeypots

for industrial networks”. http://scadahoneynet.sourceforge.net/

[33] Poulsen, K. Slammer worm crashed Ohio nuke plant network, SecurityFocus,

August, 2003.

[34] PROFINET International: Overview. March 1, 2012. n. pag.

http://www.profibus.com/technology/profinet/overview/

[35] Provos, Niels, and Thorsten Holz. Virtual Honeypots: From Botnet Tracking to

Intrusion Detection. 4th. Laflin: Addison-Wesley, 2010. Print.

[36] Schwartz, M., J. Mulder, J. Trent and W. Atkins, Control system devices:

Architectures and supply channels overview, SANDIA Report SAND2010-5183,

Sandia National Laboratories, Albuquerque, New Mexico, 2010

[37] Skoudis, Ed, and Tom Liston (2009). Counter hack : a step-by-step guide to

computer attacks and effective defenses. Upper Saddle River, N.J.; London:

Prentice Hall PTR ; Pearson Education [distributor].

[38] Spitzner, Lance (2002). Honeypots: Tracking hackers. (First ed.). Addison-Wesley.

[39] Stouffer, Keith, Falco, Joe, and Scarfone, Karen, NIST SP 800-82, Guide to

Industrial Control Systems (ICS) Security, 2011

[40] Triangle MicroWorks, “DNP3 Overview”, Raleigh, North Carolina

(www.trianglemicroworks.com/documents/DNP3_Overview.pdf), 2002

[41] Ultra Electronics (2011), “EtherGuard Encryptor 3e-636S-2”. http://www.ultra-

3eti.com/products/cyberfence/etherguard_encryptor_3e-636s-2/

[42] United States Nuclear Regulatory Commission Office of Nuclear Reactor

Regulation, Effects of ethernet-based, non-safety related controls on the safe and

continued operation of nuclear power stations, NRC Information Notice 2007-15,

April, 2007.

109

[43] Zetter, Kim. “10K Reasons to Worry About Critical Infrastructure”.

http://www.wired.com/threatlevel/2012/01/10000-control-systems-online/, 2011.

Retrieved on March 28, 2012.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

14 Jun 2012
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Sep 2010 – Jun 2012

4. TITLE AND SUBTITLE

Emulating Industrial Control System Field Devices Using

Gumstix Technology

5a. CONTRACT NUMBER

5b. GRANT NUMBER

HSHQDC-11-X-00089
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Berman, Dustin, CIV

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way, Building 640

WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCO/ENG/12-13

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of Homeland Security ICS-CERT

POC: Eric Cornelius, DHS ICS-CERT Technical Lead

ATTN: NPPD/CS&C/NCSD/US-CERT

Mailstop: 0635, 245 Murray Lane, SW, Bldg 140, Washington, DC 20528

email: ics-cert@dhs.gov phon: 1-877-776-7585

10. SPONSOR/MONITOR’S ACRONYM(S)

DHS ICS_CERT

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES

This material is declared a work of te U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Industrial Control Systems (ICS) have an inherent lack of security and situational awareness capabilities at the field device

level. Yet these systems comprise a significant portion of the nation’s critical infrastructure. Currently, there is little insight

into the characterization of attacks on ICS. Stuxnet provided an initial look at the type of tactics that can be employed to

create physical damage via cyber means. The question still remains, however, as to the extent of malware and attacks that are

targeting the critical infrastructure, along with the various methods employed to target systems associated with the ICS

environment. This research presents a device using Gumstix technology that emulates an ICS field device. The emulation

device is low-cost, adaptable to myriad ICS environments and provides logging capabilities at the field device level. The

device was evaluated to ensure conformity to RFC standards and that the operating characteristics are consistent with actual

field devices.

15. SUBJECT TERMS

Supervisory Control and Data Acquisition, Industrial Control System, Programmable Logic Controller, Emulation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
OF PAGES

122

19a. NAME OF RESPONSIBLE PERSON

Maj Jonathan W. Butts
a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, x 4332 (Jonathan.Butts@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

